Lesson 3: The Cosine Law

Trigonometry - Sine and Cosine Laws Page 1

Trigonometry - Sine and Cosine Laws Lesson \#3: The Cosine Law

Introduction

Consider triangle $A B C$ in which $\angle A=36^{\circ}, A B=3 \mathrm{~cm}$ and $A C=6 \mathrm{~cm}$. What happens when you try to apply the sine law to determine the length of $B C$?

$$
\frac{\sin 36}{a}=\frac{\sin B}{6}=\frac{\sin C}{3}
$$

In the example above, where we are given the length of two sides and the contained angle, the sine law is not applicable.

We can find the length of $B C$ by making a right triangle $B C D$ in the diagram below and using SOHCAHTOA to determine the lengths of $C D$ and $A D$.

Determine the lengths of $C D$ and $A D$ to the nearest hundredth of a cm , and show how these lengths can be used to determine the length of $B C$ to the nearest tenth of a cm .

$$
\begin{aligned}
& \sin 36=\frac{d}{6} \\
& d=6 \sin 36 \\
& d=3.5267 \\
& \cos 36=\frac{c}{6} \\
& c=6 \cos 36 \\
& c=4.8541 \\
& 4.8541-3=1.854
\end{aligned}
$$

$$
3.52 .67^{2}+1.8571^{2}=x^{2}
$$

The method above is time consuming.
The length of $B C$ can be determined in one step by using the cosine law.

232 Trigonometry - Sine and Cosine Laws Lesson \#3: The Cosine Law

The Cosine Law

In every triangle $A B C, \quad a^{2}=b^{2}+c^{2}-2 b c \cos A$.

Proof of the Cosine Law

- The diagram shows triangle $A B C$ placed with base $A B$ on the x-axis and A at the origin.
- The line $C D$ is drawn perpendicular to $A B$ and is h units in length.
- $A D=x$ units so $D B=c-x$ units.

Complete the following work to show that $a^{2}=b^{2}+c^{2}-2 b c \cos A$.

$$
\begin{aligned}
& \text { In } \triangle A D C, \cos A=\frac{A D}{A C}=\frac{x}{b} \\
& \text { In } \triangle B D C, \quad B C^{2}=C D^{2}+D B^{2} \\
& a^{2}=h^{2}+(c-x)^{2} \\
& \text { so } x= \\
& a^{2}=h^{2}+c^{2}-2 c x+x^{2} \\
& a^{2}=\left(h^{2}+x^{2}\right)+c^{2}-2 c x \\
& a^{2}=\quad+c^{2}-2 c(\quad) \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A .
\end{aligned}
$$

By placing $A C$ and then $B C$ on the x-axis, similar equations can be derived.

$$
b^{2}=c^{2}+a^{2}-2 c a \cos B
$$

$$
c^{2}=a^{2}+b^{2}-2 a b \cos C
$$

This version of the cosine law can be used in any triangle if we are given the lengths of two sides and the contained angle (SAS)

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Trigonometry - Sine and Cosine Laws Lesson \#3: The Cosine Law 233

Consider the $\triangle A B C$ from Class Ex. \#1 in which $\angle A=36^{\circ}$, $A B=3 \mathrm{~cm}$, and $A C=6 \mathrm{~cm}$. Determine the length of $B C$, to the nearest tenth of a cm , using the cosine law.

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A
$$

$$
a^{2}=6^{2}+3^{2}-2(6)(3) \cos 36
$$

$$
\text { what rm } a^{2}=15.8753
$$

Consider triangle $P Q R$ shown.
a) Complete the cosine law for calculating side q.

b) Calculate, to the nearest tenth of a cm, the length of the third side of $\triangle P Q R$ if $Q P=1.7 \mathrm{~cm}, Q R=3.1 \mathrm{~cm}$, and $\angle P Q R=110^{\circ}$.

Bellevue is 30 km north of Ayr and Churchville is 18 km northwest of Ayr. Calculate the distance between Bellevue and Churchville to the nearest km .
A

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
&=18^{2}+30^{2}-2(18)(30) \cos 45 \\
& a^{2}=460.32 \\
& \sim \sim n 1 \mathrm{rm}
\end{aligned}
$$

$$
\begin{aligned}
& a^{2}=460.32 \\
& a=21 \mathrm{~km}
\end{aligned}
$$

Complete Assignment Questions \#1 - \#4

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Alternative Form of the Cosine Law

The equation
can be rearranged to the form

This form of the cosine law can be used to determine any angle in a triangle when we are given the length of all three sides (SSS).

Determine the largest angle in $\triangle A B C$ if $a=14.7, b=8.9$, and $c=12.6$.

b) $\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$

Complete the following for triangle $A B C$.
a) $\cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c}$

Determine the largest angle

$$
\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
$$

$$
\cos A=\frac{8.9^{2}+12.6^{\circ}-14.7^{2}}{2(0.9)(12.6)}
$$

$$
\left.=\left(8,9^{2}+12.2^{-2} 14.7\right)^{7}\right) \div(2 \times 8.9 \times 12.6)
$$

$$
\cos A=0,09756 \ldots
$$

$$
A=\cos ^{-1}(0.09756)=84^{\circ} \quad \# 1-3,5,6
$$

Class Ex.\#7 Two ships set sail from port, P, heading in different

Two ships set sail from port, P, heading in different directions. The first ship sails 7 km to R and the second ship sails 8 km to Q. If the distance between R and Q is 13 km , determine the angle between the directions of the two ships.

Complete Assignment Questions \#5-\#11 and the Group Investigation.

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Trigonometry - Sine and Cosine Laws Lesson \#3: The Cosine Law

Assignment

1. Complete the cosine law for triangle STV.
a) $s^{2}=$
b) $v^{2}=$
2. In each case, determine the length of x to the nearest tenth of a cm .
a)

b)
16.1 cm

c)

3. In $\triangle A B C$, angle $A=49^{\circ}, b=24$, and $c=37$.

Make a sketch of the triangle and calculate a to the nearest whole number.
4. In the diagram, $A B$ represents part of a road constructed on the incline of a hill. $B C$ represents a telephone pole 7.5 m tall at the side of the road. A guide wire attached to the top of the pole is joined to the ground at A. If $A B=11.4 \mathrm{~m}$ and $\angle A B C=135^{\circ}$, determine the length of the guide wire to the nearest 0.1 m .

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.
236 Trigonometry - Sine and Cosine Laws Lesson \#3: The Cosine Law
5. Complete the formula for the cosine law in triangle $D E F$.
a) $\cos E=$
b) $\cos F=$
6. In each case, find the measure of the indicated angle to the nearest degree.
a)

b)

7. Anwar and Ingrid have three trees in their garden. The trees form a triangle as shown in the diagram. Determine, to the nearest degree, the smallest angle between the trees.

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.
8. The solid in the diagram was formed by removing a corner from a cube of 24 cm . The length of $E B$ is 6 cm .
a) Calculate, to the nearest tenth, the lengths of $P E$ and $P R$.

a) Calculate, to the nearest tenth, the lengths of $P E$ and $P R$.

b) Calculate the measure of angle $P E R$ to the nearest degree.

Multiple 9. In the diagram, the value of x^{2} is
A. 112
B. 304
C. $208-96 \sqrt{3}$
D. $208+96 \sqrt{3}$

10. The length of $B C$ in cm is
A. $5 \sqrt{3}$
B. 10
C. $10 \sqrt{3}$

D. 20

238 Trigonometry - Sine and Cosine Laws Lesson \#3: The Cosine Law

Numerical 11. The diagram shows a glass bowl with two chop-sticks Response resting on the rim at points S and T. The lengths of the parts of the chop-sticks inside the bowl are 9 cm and 11.5 cm , respectively.

The length of $S T$, to the nearest tenth of a cm , is \qquad .
(Record your answer in the numerical response box from left to right.)

The sines of the angles of a triangle are in the ratio 2:3:4. Determine the ratios of the cosines of the angles.
b) $v^{2}=s^{2}+t^{2}-2 s t \cos V$
2. a) 12.6 cm b) 4.2 cm
c) 36.7 cm
3. 28
4. 17.5 m
b) $\cos F=\frac{d^{2}+e^{2}-f^{2}}{2 d e}$ 6. a) 41°
b) 36°
c) 92° d) 138°
7. 40°
8. a) $P E=30.0 \mathrm{~cm}, P R=33.9 \mathrm{~cm}$
b) 69°
5. a) $\cos E=\frac{?}{2 d f}$
b) $\cos F=\frac{}{2 d e}$
6. a) $41^{\circ} \quad$ b) 36°
c) 92° d) 138°
7. 40°
8. a) $P E=30.0 \mathrm{~cm}, P R=33.9 \mathrm{~cm}$
b) 69°
9. D
10. C

11. | 1 | 6 | \cdot | 3 |
| :--- | :--- | :--- | :--- |

Group Investigation 14:11:-4
Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

