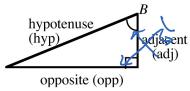

Trigonometry - Sine and Cosine Laws Lesson #1: Review of Right Triangle Trigonometry

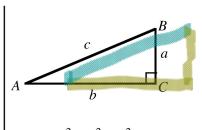
Ratios of Sides in a Right Triangle

When solving problems in right triangle trigonometry we need to be given a right angle, a side length, and one other angle or side.


Note the following points emphasized in the right triangle diagrams below.

- The opposite and adjacent sides can switch depending on the angle being used.
- The Pythagorean Theorem can be used if two sides of the triangle are known and the third side is required.

$$\cos A = \frac{\text{adj}}{\text{hyp}}$$


$$\tan A = \frac{\text{opp}}{\text{adj}}$$

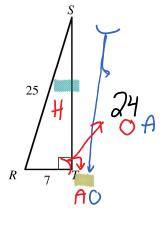
$$\sin B = \frac{\text{opp}}{\text{hyp}}$$

$$\cos B = \frac{\text{adj}}{\text{hyp}}$$

$$\tan B = \frac{\text{opp}}{\text{adj}}$$

$$c^{2}-a^{2}=b^{2}$$

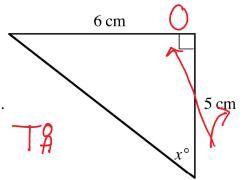
$$c^{2}-a^{3}=b^{2}$$


Consider the following triangle.

a) Use the Pythagorean Theorem to calculate the length of *ST*.

$$25^{2}-7^{2}=51^{2}$$
 $576=51^{2}$

b) State, as rational numbers, the values of the following trigonometric ratios.


c) Comment on any relationships you see from your answers in b).

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Calculating Angles in Right Triangles

Complete the following example to review how to calculate an angle measure using SOHCAHTOA.

In the diagram we are required to determine the measure of the angle marked x° to the nearest degree.

Relative to the angle x° , the OPPOSITE side is 6 and the ADJACENT side is 5 so we use the TANGENT ratio.

We write $\tan x^{\circ} = \frac{6}{5} = 1.2$.

If $\tan x^{\circ} = 1.2$, the measure of the angle x° can be determined by using the inverse tangent function \tan^{-1} .

If $\tan x^{\circ} = 1.2$, then $\tan^{-1}(1.2) = x$.

On a calculator, access the inverse tangent function by pressing 2


Use your calculator to complete the solution.

 $\tan x^{\circ} = 1.2 \text{ so } x^{\circ} = \underline{\qquad}$ the nearest degree).

A telephone pole is 12 metres high and is supported by a wire, 14 metres long, fixed to the top of the pole and to the ground.

Draw a sketch to illustrate the information and calculate, to the nearest degree, the angle between the wire and the ground.

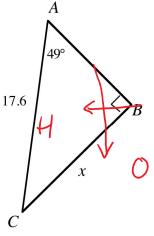
$$S_{H}^{\circ}$$
 $\sin X = \frac{12}{14}$
 $X = \sin^{-1}(12 \div 14)$
 $X = 59^{\circ}$

Calculating Sides in Right Triangles

Complete the following examples to review how to calculate a side using SOHCAHTOA.

a) In the diagram we are required to determine the measure of the side BC.

Relative to the angle of 49°, the given side is the HYPOTENUSE and the required side is the OPPOSITE so we use the SINE ratio.


• We write

$$\left(1\sin(6)9^\circ = \frac{x}{17.6}\right)$$

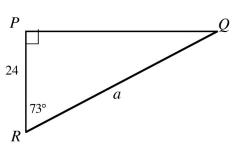
• Cross multiply to get

$$(17.6) \sin 49^{\circ} = x$$

• To one decimal place, x = 13.3

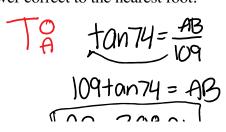
24 ÷ (73C05)

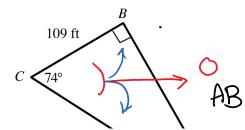
b) In the diagram we are required to determine the measure of the side QR.

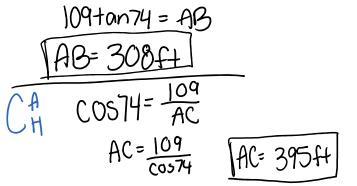

Relative to the angle of 73°, the given side is the ADJACENT and the required side is the HYPOTENUSE so we use the COSINE ratio.

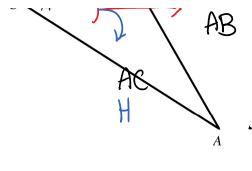
$$\cos 73^\circ = \frac{24}{a}$$

• Cross multiply to get

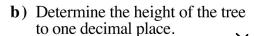

$$(a)\cos 73^\circ = 24$$

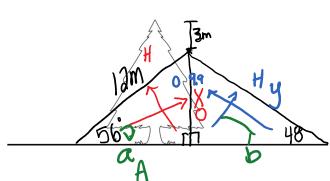



- Divide both sides by $\cos 73^{\circ}$ to get $a = \frac{24}{\cos 73^{\circ}}$
- To one decimal place, $a = \underline{82}_{SO}QR = \underline{82}$.



Use trigonometric ratios to determine the lengths of *AB* and *AC* in the given triangle. Answer correct to the nearest foot.


Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.


218 Trigonometry - Sine and Cosine Laws Lesson #1: Review of Right Triangle Trigonometry

A large tree is to be transported to a new location. The tree is held vertical by means of two guy wires of unequal length on opposite sides of the tree. One of the wires makes an angle of 48° with the ground. The other wire is 12 m long and makes an angle of 56° with the ground. Both wires are attached 3 m down from the top of the tree.

a) Illustrate this scenario below.

Sh Sin56=
$$\frac{x}{12}$$

X=12sin56
X=9,9
height of the tree
9,9+3=[12.9m]

c) Determine the length of the other wire to the nearest tenth of a metre.

$$\frac{5}{9}$$
 $\frac{9.9}{9}$ $\frac{9.9}{5}$ $\frac{9.9}{5}$

d) Determine, to the nearest tenth of a metre, the horizontal distance at ground level between the two guy wires.

CH COS56=
$$\frac{\alpha}{12}$$
 $\alpha = 12\cos 56$
 $\alpha = 6.7m$

$$tan 48 = \frac{9.9}{b}$$
 $b = \frac{9.9}{tan 48}$
 $b = 8.9m$

total around distance 6.7+8.9 = 1156m

total grand distance 6.7+8.9 = [15.6m]

e) The guy wire in c) breaks and a new wire of the same length is attached 2 m down from the top of the tree. Calculate, to the nearest degree, the angle which this guy wire makes with the ground.

Complete Assignment Questions #1 - #8

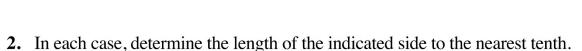
#1-5

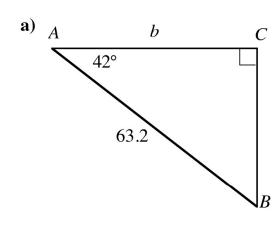
Copyright © by Absolute Value Publications. This book is **NOT** covered by the Cancopy agreement.

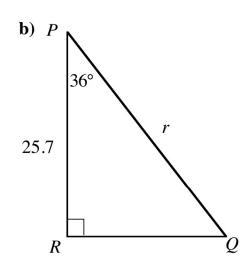
Trigonometry - Sine and Cosine Laws Lesson #1: Review of Right Triangle Trigonometry

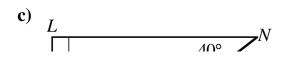
219

Assignment

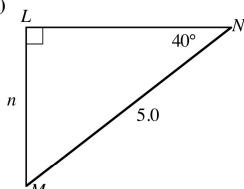

1. Consider ΔLMN .

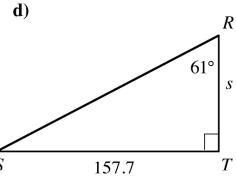

Write the ratio of sides for each of the following.

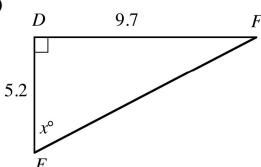

- i) $\sin L =$
- ii) $\cos L =$
- iii) tan L =

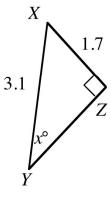


- \mathbf{v}) $\cos M =$
- vi) tan M =





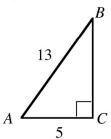

c)



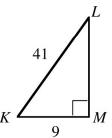
3. In each case, determine the measure of the indicated angle to the nearest degree.

a)

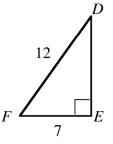
b)



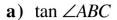
Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

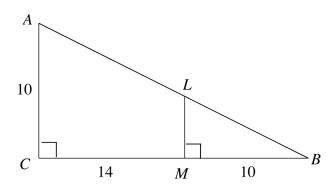

220 Trigonometry - Sine and Cosine Laws Lesson #1: Review of Right Triangle Trigonometry

4. Determine, to 2 decimal places, the value of each trigonometric ratio.


 \mathbf{a}) $\cos A$

 \mathbf{b}) $\sin K$


 \mathbf{c}) tan F


5. Determine the exact value of the following.

5. Determine the exact value of the following.

- c) $\sin \angle BAC$
- Christine places a ladder against the side of a house so that the top of the ladder makes an angle of 52° with the side of the house. The bottom of the ladder is 1.20 m from the house.
 - a) Calculate, to the nearest hundredth of a metre, the vertical distance from the top of the ladder to the ground.

b) Calculate, to the nearest hundredth of a metre, the length of the ladder.

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Trigonometry - Sine and Cosine Laws Lesson #1: Review of Right Triangle Trigonometry 221

Multiple 7. In a right triangle PQR, PQ = 50 units, PR = 48 units and RQ = 14 units. The value of $\sin Q$ and $\cos Q$ are respectively

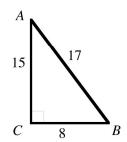
A.
$$\frac{7}{25}$$
 and $\frac{24}{25}$

B.
$$\frac{24}{25}$$
 and $\frac{7}{25}$

B.
$$\frac{24}{25}$$
 and $\frac{7}{25}$

C.
$$\frac{24}{7}$$
 and $\frac{7}{24}$

D.
$$\frac{24}{7}$$
 and $\frac{7}{25}$


Use the following information to answer the next question.

Three statements are made for the right triangle ABC.

Statement 1:
$$\tan A = \frac{\sin A}{\cos A}$$

Statement 2:
$$1 + (\tan A)^2 = \frac{1}{(\cos A)^2}$$

Statement 3:
$$(\sin B)^2 + (\cos B)^2 = 1$$

- **8.** How many of the statements are true?
 - A. Zero
 - B. One
 - C. Two
 - **D.** Three

Copyright © by Absolute Value Publications. This book is **NOT** covered by the Cancopy agreement.

222 Trigonometry - Sine and Cosine Laws Lesson #1: Review of Right Triangle Trigonometry

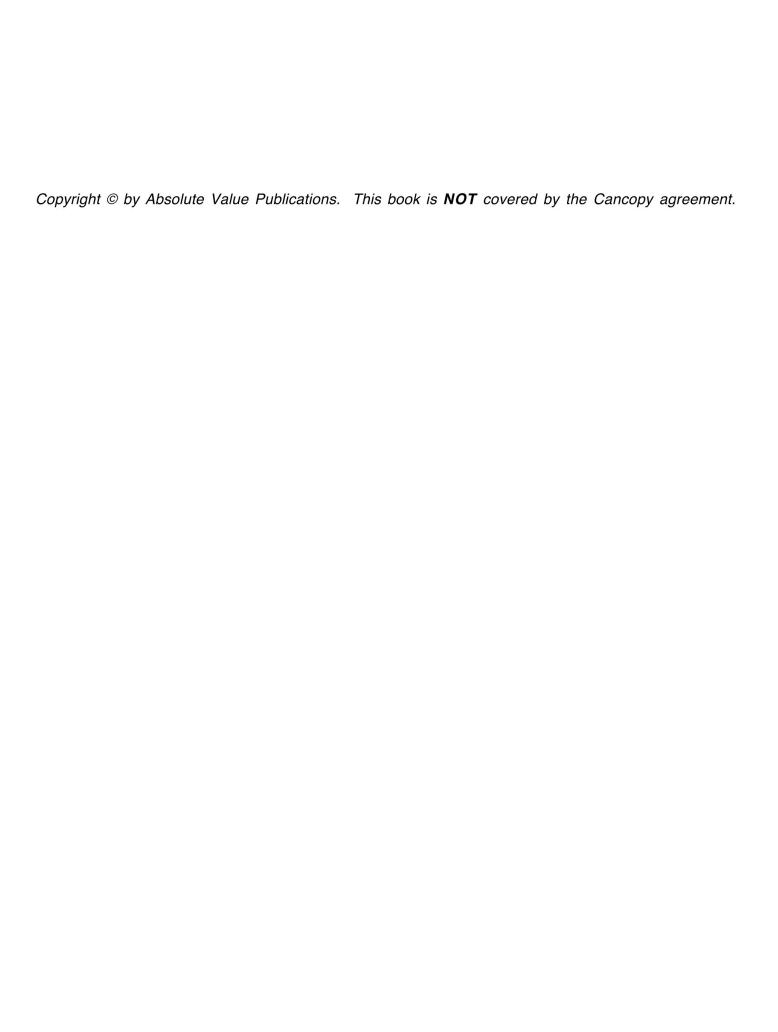
Answer Key

1. i)
$$\frac{MN}{LM}$$

ii)
$$\frac{LN}{LM}$$

iii)
$$\frac{MN}{LN}$$

ii)
$$\frac{LN}{LM}$$
 iii) $\frac{MN}{LN}$ iv) $\frac{LN}{LM}$ v) $\frac{MN}{LM}$ vi) $\frac{LN}{MN}$


$$\mathbf{v}$$
) $\frac{MN}{LM}$

$$\mathbf{vi}$$
) $\frac{LN}{MN}$

5. a)
$$\frac{5}{12}$$
 b) $\frac{25}{6}$ c) $\frac{12}{13}$

b)
$$\frac{25}{6}$$

c)
$$\frac{12}{13}$$

