

Quadratic Functions and Equations Lesson #2: Analyzing Quadratic Functions - Part One

Quadratic Function

A quadratic function is a function which can be written in the form

$$f(x) = ax^2 + bx + c$$
, where $a, b, c \in R$, and $a \ne 0$

or in equation form as

$$y = ax^2 + bx + c$$
, where $a, b, c \in R$, and $a \ne 0$

Quadratic Equation

A quadratic equation is an equation which can be written in the form

$$ax^2 + bx + c = 0$$
, where $a, b, c \in R$, and $a \ne 0$.

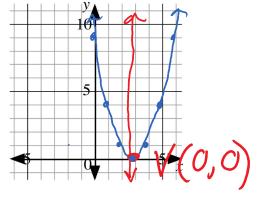
The roots of the quadratic equation $ax^2 + bx + c = 0$ are the zeros of the related quadratic function $f(x) = ax^2 + bx + c$.

General and Standard Forms

A quadratic function can be written in **general** or **standard** form.

General Form:
$$f(x) = ax^2 + bx + c$$
, or $y = ax^2 + bx + c$, where $a, b, c \in R$, and $a \ne 0$.

Standard Form:
$$f(x) = a(x-p)^2 + q$$
, or $y = a(x-p)^2 + q$, where $a, p, q \in R$, and $a \ne 0$.


In this unit we will study both the general form and standard form, beginning with the standard form in this lesson.

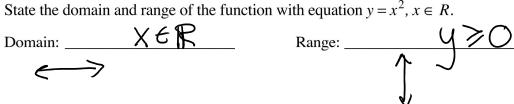
Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Analyzing the Graph of the Function with Equation $y = x^2$

• Graph the function with equation $y = x^2$ by completing the table of values. Join the points with a smooth curve. The graph of this function is called a <u>parabola</u>.

х	-3	-2	-1	0	1	2	3	
у		9	4	1	0	١	4	9

- The axis of symmetry is the "mirror" line which splits the parabola in half. State the equation of the axis of symmetry for this parabola.
- The <u>vertex</u> of a parabola is where the axis of symmetry intersects the parabola. The vertex can represent a minimum point or maximum point depending on whether the parabola opens up or down.


Label the vertex (*V*) on the graph and state its coordinates.

• The maximum or minimum value of a quadratic function occurs at the vertex and is represented by the y-coordinate of the vertex. Complete the following:

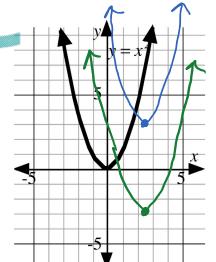
MMM value of the function with equation $y = x^2$ is _____.

• State the domain and range of the function with equation $y = x^2$, $x \in R$.

The following investigations can be completed as a class lesson or as an individual assignment. The process used in these explorations will be further developed in grade 12 mathematics.

Analyzing the Function with Equation $y = a(x - p)^2 + q$, a = 1

The next three investigations help us explore some general transformations on the graph of $y = x^2$ and the relationship they have to the standard form $y = a(x - p)^2 + q$, where a = 1.


A **transformation** is an operation which moves (or maps) a figure from an original position to a new position.

In each investigation, use a graphing calculator to sketch the equations.

Investigation #1

Analyzing the Graph of $y = x^2 + q$

The graph of $y = f(x) = x^2$ is shown.

- a) Write an equation which represents each of the following:

•
$$y = f(x) + 3$$

$$y = f(x) - 3$$

$$y = x^2 + 3$$
Use a graphing calculator to sketch $y = f(x) + 3$

- **b**) Use a graphing calculator to sketch y = f(x) + 3and y = f(x) - 3 on the grid.
- c) Complete the following chart.

Function	Equation Representing Function	Vertex	Max/Min Value	Equation of Axis of Symmetry	Description of Transformation	
y = f(x)	y = x ²	(0, 0)	min, 0	x = 0	no transformation	
y = f(x) + 3	y=x2+	3 (0	,3) mi1	13 X=	Ver-Appelnstation unitsup	
y = f(x) - 3	y = x2 -	3 (0	,-3) mir)-3 X=	0 vertical tra	nslation wn
y = f(x) + q	y=x2+	g (O	, 8) MI	ng X=	O vertical trans	

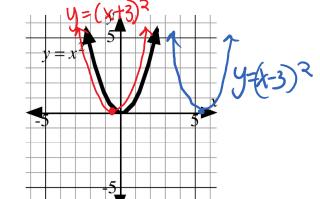
d) What is the effect of the **parameter**, q, on the graph of $y = x^2 + q$?

the graph undergoes a vertical translation

the graph undergoes a vertical translation $y = x^2 + q$ results in

 $\frac{\text{Verfical}}{\text{translation (or shift) of } q \text{ units.}}$

dawn If q > 0, the parabola moves ______ \bigcirc If q < 0, the parabola moves _____


Copyright © by Absolute Value Publications. This book is **NOT** covered by the Cancopy agreement.

Quadratic Functions and Equations Lesson #2: Analyzing Quadratic Functions - Part One

Investigation #2

Analyzing the Graph of $y = (x - p)^2$

The graph of $y = f(x) = x^2$ is shown.

a) Write an equation which represents each of the following:

•
$$y = f(x+3)$$

$$y = f(x-3)$$

$$y = (x-3)^2$$

- **b**) Use a graphing calculator to sketch y = f(x + 3) and y = f(x 3) on the grid.
- c) Complete the following chart.

horizontal (-->

Function	Equation Representing Function	Vertex	Max/Min Value	Equation of Axis of Symmetry	Description of Transformation	
y = f(x)	y = x ²	(0, 0)	min, 0	× = 0	no transformation	
y = f(x+3)	y=(x+3)2 (-3	3,0) mir),O χ = -	<u>nori</u> auataklation Dwits left	
y = f(x - 3)	y=(x-3)3 (3	o) min	n,0 X=	5 Units rial	ht
y = f(x - p)	y=(x-) ² (P	10) M(1	10 X=	\mathbf{I}	nns butten

d) What is the effect of the **parameter**, p, on the graph of $y = (x - p)^2$?

e) Compared to the graph of $y = x^2$, the graph of $y = (x - p)^2$ results in a _____NOrizon tatranslation (shift) of p units.

Copyright © by Absolute Value Publications. This book is **NOT** covered by the Cancopy agreement.

Quadratic Functions and Equations Lesson #2: Analyzing Quadratic Functions - Part One 281

Investigation #3

Analyzing the Graph of $y = (x - p)^2 + q$

Consider the function $f(x) = x^2$.

$$y_1 = x^2$$

 $y_2 = (x+2)^2 - 4$

- a) Write an equation which represents f(x + 2) 4.
- **b**) Predict the transformations on $y = x^2$ in a). Use a graphing calculator to verify the results.

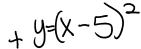
XT]
$\overline{\mathbf{A}}$	

Function	Equation Representing Function	Vertex	Max/Min Value	Equation of Axis of Symmetry	Description of Transformation
y = f(x)	y = x ²	(0, 0)	min, 0	× = 0	no transformation
y = f(x+2) - 4	y=(x+2)2	-4 (-	2,-4) mu	1-4 X=	, 0,
y = f(x - p) + q	y = (x-p)°	+g (F	19) min	19 X=	P translation Pri

Describe how the graphs of the following functions relate to the graph of $y = x^2$.

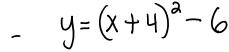
a)
$$y = (x + 10)^2$$

b)
$$y = x^2 + 4$$


c)
$$y + 8 = (x - 5)^2$$

a)
$$y = (x + 10)^2$$

 $p = -10$
b) $y = x^2 + 4$
 $y = (x - 5)^2$
 $y = (x - 5)^2 - 8$
 $y = (x - 5)^2 - 8$
 $y = (x - 5)^2 - 8$
 $y = (x - 5)^2 - 8$



The following transformations are applied to the graph of $y = x^2$. Write the equation of the image function for each.

a) a horizontal translation of 5 units right

b) a translation of 6 units down and 4 units left

Write the coordinates of the image of the point (3, 9) on the graph $y = x^2$ when a translation of two units up and seven units right is applied.

$$(3,9) \rightarrow (3,11) \rightarrow (10,11)$$

Complete Assignment Questions #1 - #10

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

282 Quadratic Functions and Equations Lesson #2: Analyzing Quadratic Functions - Part One

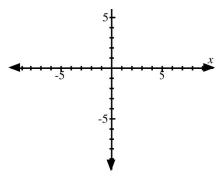
Assignment

1. Describe how the graphs of the following functions relate to the graph of $y = x^2$.

a)
$$v = (x+5)^2$$

b)
$$y = x^2 - 7$$

c)
$$y - 8 = x^2$$


d)
$$v = 5 + (x - 2)^2$$

e)
$$y + 7 = (x + 1)^2 - 10$$
 f) $y = (x - a)^2 - b$

f)
$$y = (x - a)^2 - b$$

- **2.** Consider the graph of the function $f(x) = (x-2)^2 + 3$.
 - a) Without using a graphing calculator, sketch the graph on the grid.
 - **b**) State the coordinate of the vertex.

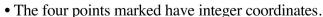
- **b**) State the coordinate of the vertex.
- c) State the maximum or minimum value of the function.

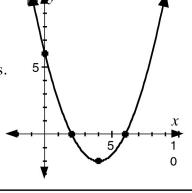
- **d**) State the domain and range of the function.
- 3. The following transformations are applied to the graph of $y = x^2$. Write the equation of the image function for each.
 - a) a horizontal translation of 7 units right
 - **b**) a vertical translation of 2 units down

 - c) a translation 3 units left and 8 units up d) a translation c units down and d units right
- **4.** Write the coordinates of the image of the point (-2, 4) on the graph $y = x^2$ when each of the following transformations is applied.
 - a) A horizontal translation of 2 units to the left.
 - **b**) A translation of 3 units up and 11 units right.

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Quadratic Functions and Equations Lesson #2: Analyzing Quadratic Functions - Part One 283


5. Complete the following table.


Function	$y = x^2 + 5$	$y = (x+3)^2 - 4$	$y + 9 = (x - 6)^2 + 1$	$y - w = (x+r)^2$
Coordinates of Vertex				
Max/Min Value				
Eqn. of Axis of Symmetry				
Domain				
Range				

6. After a combination of a horizontal and a vertical translation, the graph of $y = x^2$ has an image graph with a vertex at (2,-6). Describe the translations.

Use the following information to answer questions #7 and #8.

• The graph of a quadratic function is shown.

Multiple 7.

The domain and range, respectively, of the function are

- $x \in R$ and $y \in R$ A.
- $x \ge -2$ and $y \in R$ В.
- C. $x \in R$ and $y \ge -2$
- D. $2 \le x \le 6$ and $y \ge -2$

Numerical 8. Response

The sum of the x and y-intercepts is _____. (Record your answer in the numerical response box from left to right.)

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

284 Quadratic Functions and Equations Lesson #2: Analyzing Quadratic Functions - Part One

Choice

Multiple 9. Which of the following transformations shifts the graph of $y = x^2$ to the graph of $y + a = (x - b)^2$?

- a units right and b units down A.
- b units right and a units down В.
- b units up and a units right. C.
- D. a units down and b units left

The function defined by the equation $y = x^2$ is transformed to $y = (x + 2)^2 + 4$. **10.** If the point (2, 4) lies on the graph of $y = x^2$, which of the following points must lie on the graph of $y = (x + 2)^2 + 4$?

- $\mathbf{A.} (0,0)$
- **B.** (4,0)
- C. (4,8)
- $\mathbf{D}. (0,8)$

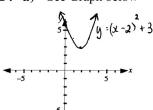
C. (4,8)

 $\mathbf{D}. (0,8)$

Answer Key

1. a) horizontal translation 5 units left

c) vertical translation 8 units up


e) translation 1 unit left and 17 units down

b) vertical translation 7 units down

d) translation 2 units right and 5 units up

f) translation a units right and b units down

2. a) See Graph below

b) (2, 3)

c) minimum value of 3

d) Domain: $\{x \mid x \in R\}$ Range: $\{y \mid y \ge 3, y \in R\}$

3. a) $y = (x-7)^2$ **b)** $y = x^2 - 2$ **c)** $y = (x+3)^2 + 8$ **d)** $y = (x-d)^2 - c$

4. a) (-4, 4) **b**) (9, 7)

5. See table below

╸.	. See table below									
	Function	$y = x^2 + 5$	$y = (x+3)^2 - 4$	$y + 9 = (x - 6)^2 + 1$	$y - w = (x + r)^2$					
	Coordinates of Vertex	(0,5)	(-3,-4)	(6, -8)	(-r, w)					
	Max/Min Value	min, 5	min,-4	min, –8	min, w					
	Eqn. of Axis of Symmetry	x = 0	x = -3	<i>x</i> = 6	x = -r					
	Domain	$\{x \mid x \in \mathfrak{R}\}$	$\{x \mid x \in \mathfrak{R}\}$	$\{x \mid x \in \mathfrak{R}\}$	$\{x \mid x \in \mathfrak{R}\}$					
	Range	$\{y \mid y \ge 5, y \in \Re\}$	$\{y \mid y \ge -4, y \in \Re\}$	$\{y \mid y \ge -8, y \in \Re\}$	$\{y \mid y \ge w, y \in \Re\}$					

6. horizontal translation 2 units right, vertical translation 6 units down.

7. C

8.

4

9. B

10. D

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.