Quadratic Functions and Equations Lesson #1: Connecting Zeros, Roots, and x-intercepts

Function and Function Notation

Recall the following information from previous math courses:

Function

A functional relation, or **function**, is a special type of relation in which <u>each element of the</u> <u>domain is related to exactly one element of the range</u>. If any element of the domain is related to more than one element of the range, then the relation is not a function.

Function Notation

Under a function, f, the image of an element, x, in the domain is denoted by f(x), which is read "f of x".

$$x$$
 $f(x)$ $f(x)$ $f(x)$ for x function of x

equation of graph of function

v = 4x - 8

y = 0

y = 4(2) - 8

Consider a function *f* defined by the formula f(x) = 4x - 8. The notation f(x) = 4x - 8 is called **function notation**.

We can show that, under the function *f*, the image of 5 is 12. We write f(5) = 12.

function notation	equation of graph of function	
f(x) = 4x - 8f(5) = 4(5) - 8f(5) = 12	y = 4x - 8 y = 4(5) - 8 y = 12	input (X)

We can also show that, under the function *f*, the image of 2 is 0. We write f(2) = 0.

 $\frac{function notation}{f(x) = 4x - 8}$ $\frac{f(2) = 4(2) - 8}{f(2) = 0}$

We can say:

"The zero of the function f(x) = 4x - 8 is 2." "The root of the equation y = 4x - 8 is 2."

Zero(s) of a Function

A **zero of a function** is a value of the independent variable which makes the value of the function equal to zero. Zero(s) of a function can be found by solving the equation f(x) = 0.

Class Ex. #1

Find the zero of the function f where
$$f(x) = 7x - 21$$
.
 $7x - 21 = 0$ Solve for x

$$7x = 21$$
 (x=3) the zero of the function f is 3

-y=C

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

268 Quadratic Functions and Equations Lesson #1: Connecting Zeros, Roots, and x-intercepts

Investigation #1 Connecting Roots, x-intercepts, and Zeros in a Linear Relation

a) The graph of y = 2x - 6 is shown. Determine the x-intercept of the graph algebraically and graphically.

c) State the connection between the *x*-intercepts of the graph of y = 2x - 6 and the roots of the equation 2x - 6 = 0.

d) Consider the function f(x) = 2x - 6. What is the zero of the function?

e) What is the connection between the x-intercepts of the graph of y = 2x - 6, the roots of the equation 2x - 6 = 0, and the zero of the function f(x) = 2x - 6?

all the same value

Copyright © by Absolute Value Publications. This book is **NOT** covered by the Cancopy agreement.

Quadratic Functions and Equations Lesson #1: Connecting Zeros, Roots, and x-intercepts 269

Investigation #2 Connecting Roots, x-intercepts, and Zeros in a Quadratic Relation

Investigation #2 | *Connecting Roots, x-intercepts, and Zeros in a Quadratic Relation*

a) Jacques is determining the roots of the equation $x^2 - x - 6 = 0$. He wrote the equation in factored form and used the Zero Product Law to determine the roots of the equation.

Complete his work to solve for *x*.

$$\chi^{2}-\chi-6=0$$
 $\xrightarrow{X_{1}+}_{-6_{1}-1}$
(x-3)(x+a)=0
 $\chi=-2,3$

b) The graph of $y = x^2 - x - 6$ is shown. State the *x*-intercepts of the graph and mark them on the grid.

- c) i) State the connection between the *x*-intercepts of the graph of $y = x^2 - x - 6$ and the roots of the equation $x^2 - x - 6 = 0$. So WR VOLLS
 - ii) Explain the connection between the factors of $x^2 - x - 6$ and the roots of the equation $x^2 - x - 6 = 0$.

d) Consider the function $g(x) = x^2 - x - 6$. Determine the zeros of the function.

$$(x-3)(x+2)=0$$
 the zeros are $3 \neq -2$
 $x=3,-2$

e) State the connection between

B

- the *x*-intercepts of the graph of $y = x^2 x 6$
- the **roots** of the equation $x^2 x 6 = 0$, and
- the **zeros** of the function $g(x) = x^2 x 6$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

270 Quadratic Functions and Equations Lesson #1: Connecting Zeros, Roots, and x-intercepts

Class Ex. #2 **a**) Fill in the blanks in the following statement regarding the function with equation y = f(x).

b) The graph of $f(x) = x^2 - x - 6$ is shown. Fill in the blanks.

Consider the equation $2x^2 - 7x + 3 = 0$.

- a) Describe how the zero feature of a graphing calculator can be used to determine the roots of the equation.
- **b**) Use a graphing calculator to determine the roots of the equation and sketch the graph on the grid provided.
- c) Use the *x*-intercepts of the graph of $y = 2x^2 7x + 3$ to factor the expression $2x^2 - 7x + 3$.

Sanhabers."

d) What are the zeros of the function $f(x) = 2x^2 - 7x + 3$?

Copyright © by Absolute Value Publications. This book is **NOT** covered by the Cancopy agreement.

271 Quadratic Functions and Equations Lesson #1: Connecting Zeros, Roots, and x-intercepts

Finding Zeros of a Function

To find the <u>zeros</u> of a <u>function</u>, f(x), either

• substitute zero for f(x) and find the roots of the resulting equation

- To find the <u>zeros</u> of a <u>function</u>, f(x), either
 - substitute zero for f(x) and find the roots of the resulting equation
 - graph the function and determine the *x*-intercepts of the graph

Finding the Roots of an Equation by Factoring

Finding the roots of a single variable equation may involve factoring. Except in the case of a linear equation, set the equation to zero before factoring.

Recall the following techniques for factoring common factors, difference of two squares, trinomials of the form $x^2 + bx + c = 0$, and trinomials of the form $ax^2 + bx + c = 0$.

Find the roots of the following equations.
a)
$$x^2 + 8x = 33$$
 b) $6(4x + 5)(x - 3) = 0$ c) $2x^2 - 8 = 0$
 $x^2 + 8x - 33 = 0$ $x_1 + x = \frac{-5}{4}, 3$ $a(x^2 - 4) = 0$
 $(x + 11)(x - 3) = 0^{-\frac{-3}{3}} + x = \frac{-5}{4}, 3$ $a(x - a)(x + a) = 0$
 $x = -11, 3$
roots are $-11 + 3$
 $x = \frac{-5}{4}$

Class Ex. #5

For the following functions

i) find the zeros ii) find the y-intercept of the graph of the function

a)
$$f(x) = 5x^{2} + 15x - 20$$
 b) $f(x) = 3x^{2} - 11x + 10$ c) $g(x) = 2x(2x + 1)$
i) $5x^{2} + 15x - 20 = 0$
 $5(x^{2} + 3x - 4) = 0 - \frac{x_{1} + x_{1}}{-413}$
 $5(x + 4)(x - 1) = 0$
 $x = -4, 1$
ii) $y = 1x, x = 0$
 $f(x) = 5(0)^{2} + 15(0) - 20$
When $x = 0, f(x) = -20$
 $y = -20$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

272 Quadratic Functions and Equations Lesson #1: Connecting Zeros, Roots, and x-intercepts

Complete Assignment Questions #1 - #11

Assignment

- The graph of a function, *f*, is shown. The *x* and *y*-intercepts of the graph are integers.
 - **a**) State the *x* and *y*-intercepts of the graph.
 - **b**) State the zeros of the function *f*.
- 2. Find the roots of the following equations. a) 2x(x+3) = 0

c)
$$x^3 + 8x^2 = 20x$$

$$2x^{2} - 10x + 12 = 0$$

$$2(x^{2} - 5x + 6) = 2() = 0$$

d) $4x^2 + 4x - 3 = 0$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

b)

Quadratic Functions and Equations Lesson #1: *Connecting Zeros, Roots, and x-intercepts* 273

3. Find the zeros of the following functions.

a)
$$f(x) = \frac{x}{3} + 5$$
 b) $g(x) = 25x^2 - 64$

c)
$$P(x) = 3(2x - 5)(x + 1)$$

d) $P(x) = x(x - 3)(2x + 1)$

c)
$$P(x) = 3(2x-5)(x+1)$$

d) $P(x) = x(x-3)(2x+1)$

- 4. In each of the following
 - i) determine the zeros of the function
 - ii) determine the *y*-intercept of the graph of the function

a)
$$f(x) = 5x^2 - 35x$$

b) $f(x) = 3x(x^2 - 49)$

c)
$$f(x) = 2x^2 - x - 15$$
 d) $P(x) = 8x^2 + 14x - 15$

5. Use a graphing calculator to find the zeros (as exact values) of the following functions.

a)
$$f(x) = 18x^2 - 5x - 7$$

b) $g(x) = 3x^3 - 11x^2 + 6x$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

- 274 Quadratic Functions and Equations Lesson #1: Connecting Zeros, Roots, and x-intercepts
- 6. In each case, the graph of a function with y = f(x) is shown. The x and y-intercepts of the graph are integers. Determine
 - the zeros of the function
 - the *y*-intercept of the graph of the function
 - the equation of the function in factored form

7. Use a graphing calculator to write the equation in factored form.

a)
$$y = 2x^2 - 3x - 9$$

b) $y = 5x^3 - 7x^2 - 21x - 9$

Multiple 8. The zeros of the function f(x) = 2(x - 3)(4x + 7) are Choice

A.
$$3, -\frac{7}{4}$$

B. $-3, \frac{7}{4}$
C. $0, 3, -\frac{7}{4}$
D. $2, 3, -\frac{7}{4}$

Copyright © by Absolute Value Publications. This book is **NOT** covered by the Cancopy agreement.

Quadratic Functions and Equations Lesson #1: *Connecting Zeros, Roots, and x-intercepts* 275

- 9. The roots of the equation 3x(x+1) = 6 are
 - **A.** 0, -1
 - **B.** 2,5
 - **C.** 2, -1
 - **D.** −2, 1

10. The least possible zero of the function $f(x) = 2x^3 - 7x^2 + 3x$ is

- **A.** 0
- **r** <u>1</u>

0 A. $\frac{1}{2}$ B. C. 3 -3 D.

The *y*-intercept of the graph of the function f(x) = (x + 4)(3 - 2x)(x + 1), Numerical 11. to the nearest whole number, is _____. Response

(Record your answer in the numerical response box from left to right.)

Answer Key

1. a) x-intercepts are -6 , 4 and y-intercept is -24 . b) -6 , 4					
2. a) -3, 0	b) 2, 3	c) -10, 0, 2	d) $-\frac{3}{2}, \frac{1}{2}$		
3. a) -15	b) $-\frac{8}{5}, \frac{8}{5}$	c) $-1, \frac{5}{2}$	d) $-\frac{1}{2}, 0, 3$		
4. a) i) 0, 7 c) i) $-\frac{5}{2}$, 3	ii) 0 ii) -15	b) i) -7, 0, 7 d) i) $-\frac{5}{2}, \frac{3}{4}$	ii) 0 ii) -15		
5. a) $-\frac{1}{2}, \frac{7}{9}$	b)	$0, \frac{2}{3}, 3$			
6. a) zero: 3 y-intercept: 6 f(x) = -2(x - 3)	5 y-	ros: -2, 4 intercept: -16 x = 2(x + 2)(x - 4)	c) zeros: -2, 3, 4 y-intercept: 24 f(x) = (x + 2)(x - 3)(x - 4)		
7. a) $y = (2x+3)(x-3)$ b) $y = (5x+3)(x-3)(x+1)$					
8. A	9. D	10. A	11. 1 2		

Copyright © by Absolute Value Publications. This book is **NOT** covered by the Cancopy agreement.

276 Quadratic Functions and Equations Lesson #1: Connecting Zeros, Roots, and x-intercepts

Copyright © by Absolute Value Publications. This book is **NOT** covered by the Cancopy agreement.