Quadratic Functions and Equations Lesson \#1: Connecting Zeros, Roots, and x-intercepts

Function and Function Notation

Recall the following information from previous math courses:

Function

A functional relation, or function, is a special type of relation in which each element of the dom in is related to exactly one element of the range. If any element of the domain is related to more than one element of the range, then the relation is not a function.

Function Notation

Under a function, f, the image of an element, x, in the domain is denoted by $f(x)$, which is read " f of x ".

y

$$
\text { N"f of } x \text { " function of } x
$$

Consider a function f defined by the formula $f(x)=4 x-8$.
The notation $f(x)=4 x-8$ is called function notation.
We can show that, under the function f, the image of 5 is 12 . We write $f(5)=\frac{x}{x} \quad y$.

function notation

$$
\begin{aligned}
& f(x)=4 x-8 \\
& f(5)=4(5)-8 \\
& f(5)=12
\end{aligned}
$$

equation of graph of function

$$
\begin{aligned}
& y=4 x-8 \\
& y=4(5)-8 \\
& y=12
\end{aligned}
$$

$$
\begin{aligned}
& y=4 x-8 \\
& y=4(2)-8 \\
& y=0
\end{aligned}
$$

We can say:
"The zero of the function $f(x)=4 x-8$ is 2 ." "The root of the equation $y=4 x-8$ is 2 ."

Zeros) of a Function

A zero of a function is a value of the independent variable which makes the value of the function equal to zero. Zeros) of a function can be found by solving the equation $f(x)=0$.

Find the zero of the function f where $f(x)=7 x-21$.

$$
\begin{aligned}
& 7 x-21=0 \text { solve for } x \\
& +21 \\
& \frac{7 x}{7}=\frac{21}{7} \quad x=3
\end{aligned} \text { the zero of the function } f \text { is } 3
$$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Quadratic Functions and Equations Lesson \#1: Connecting Zeros, Roots, and x-intercepts

Investigation \#1

 Connecting Roots, x-intercepts, and Zeros in a Linear Relation
a) The graph of $y=2 x-6$ is shown. Determine the x-intercept of the graph algebraically and graphically.
a) The graph of $y=2 x-6$ is shown. Determine the x-intercept

$$
\longleftarrow J-\cup
$$ of the graph algebraically and graphically.

$$
\begin{gathered}
2 x-6=0 \\
2 x=6 \\
x=3
\end{gathered}
$$

b) Determine the root of the equation $2 x-6=0$.

$$
\begin{aligned}
& 2 x=6 \\
& x=3 \\
& \text { root is } x=3
\end{aligned}
$$

c) State the connection between the x-intercepts of the graph of $y=2 x-6$ and the roots of the equation $2 x-6=0$.

same value

d) Consider the function $f(x)=2 x-6$. What is the zero of the function?

$$
\begin{aligned}
& 0=2 x-6 \\
& 6=2 x \\
& 3=x
\end{aligned}
$$

e) What is the connection between the x-intercepts of the graph of $y=2 x-6$, the roots of the equation $2 x-6=0$, and the zero of the function $f(x)=2 x-6$?
all the same value

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.
a) Jacques is determining the roots of the equation $x^{2}-x-6=0$.

He wrote the equation in factored form and used the Zero Product Law to determine the roots of the equation.

Complete his work to solve for x.

$$
\begin{gathered}
x^{2}-x-6=0 \\
(x-3)(x+2)=0^{\frac{x}{-6}+1} \\
x=-2.3
\end{gathered}
$$

b) The graph of $y=x^{2}-x-6$ is shown.

State the x-intercepts of the graph and mark them on the grid.

$$
x_{\text {int }}=-2,3
$$

c) i) State the connection between the x-intercepts of the graph of $y=x^{2}-x-6$ and the roots of the equation $x^{2}-x-6=0$.
same values

ii) Explain the connection between the factors of $x^{2}-x-6$ and the roots of the equation $x^{2}-x-6=0$.
d) Consider the function $g(x)=x^{2}-x-6$. Determine the zeros of the function.

$$
\begin{gathered}
(x-3)(x+2)=0 \\
x=3,-2
\end{gathered}
$$

e) State the connection between

- the \boldsymbol{x}-intercepts of the graph of $y=x^{2}-x-6$
- the roots of the equation $x^{2}-x-6=0$, and
- the zeros of the function $g(x)=x^{2}-x-6$
all the same values

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.
270
Quadratic Functions and Equations Lesson \#1: Connecting Zeros, Roots, and x-intercepts
a) Fill in the blanks in the following statement regarding the function with equation $y=f(x)$.

a) Fill in the blanks in the following statement regarding the function with equation $y=f(x)$.
"The zergithe function, the \qquad the rooth of corresponding equation $y=0$, are the sam\& sers."
b) The graph of $f(x)=x^{2}-x-6$ is shown. Fill in the blanks.

Consider the equation $2 x^{2}-7 x+3=0$.
a) Describe how the zero feature of a graphing calculator can be used to determine the roots of the equation.
b) Use a graphing calculator to determine the roots of the equation and sketch the graph on the grid provided.
c) Use the x-intercepts of the graph of $y=2 x^{2}-7 x+3$ to factor the expression $2 x^{2}-7 x+3$.

d) What are the zeros of the function $f(x)=2 x^{2}-7 x+3$?

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Quadratic Functions and Equations Lesson \#1: Connecting Zeros, Roots, and x-intercepts

Finding Zeros of a Function

To find the zeros of a function, $f(x)$, either

- substitute zero for $f(x)$ and find the roots of the resulting equation

To find the zeros of a function, $f(x)$, either

- substitute zero for $f(x)$ and find the roots of the resulting equation
or
- graph the function and determine the x-intercepts of the graph

Finding the Roots of an Equation by Factoring

Finding the roots of a single variable equation may involve factoring. Except in the case of a linear equation, set the equation to zero before factoring.

Recall the following techniques for factoring common factors, difference of two squares, trinomials of the form $x^{2}+b x+c=0$, and trinomials of the form $a x^{2}+b x+c=0$.

For the following functions
i) find the zeros ii) find the y-intercept of the graph of the function
a) $f(x)=5 x^{2}+15 x-20$
$\begin{array}{ll}\text { b) } f(x)=3 x^{2}-11 x+10 & \text { c) } g(x)=2 x(2 x+1)\end{array}$
i) $5 x^{2}+15 x-20=0$

$$
\begin{aligned}
& 5\left(x^{2}+3 x-4\right)=0 \quad \frac{x+t}{-4{ }^{2}} \\
& 5(x+4)(x-1)=0 \\
& x=-4,1 \\
& \text { zeros are - } 4+1 \\
& \text { ii) } y \text {-int, } x=0 \\
& \text { f(0) }=5(0)^{2}+15(0)-20 \\
& \text { when } x=0, f(x)=-20 \\
& y_{\text {int }}=-20
\end{aligned}
$$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

For each of the following functions, use a graphing calculator to

- sketch the graph of the function
- find the zeros of the function as exact values
- write the function in factored form
a) $f(x)=3 x^{2}+4 x-7$

b) $g(x)=4 x^{3}-7 x^{2}-4 x+7$

Complete Assignment Questions \#1-\#11

2. Find the roots of the following equations.
a) $2 x(x+3)=0$
b) $2 x^{2}-10 x+12=0$

$$
2\left(x^{2}-5 x+6\right)=2 C
$$

$$
x
$$

$$
T=0
$$

c) $x^{3}+8 x^{2}=20 x$
d) $4 x^{2}+4 x-3=0$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.
Quadratic Functions and Equations Lesson \#1: Connecting Zeros, Roots, and x-intercepts
273
3. Find the zeros of the following functions.
a) $f(x)=\frac{x}{3}+5$
b) $g(x)=25 x^{2}-64$
c) $P(x)=3(2 x-5)(x+1)$
d) $P(x)=x(x-3)(2 x+1)$
c) $P(x)=3(2 x-5)(x+1)$
d) $P(x)=x(x-3)(2 x+1)$
4. In each of the following
i) determine the zeros of the function
ii) determine the y-intercept of the graph of the function
a) $f(x)=5 x^{2}-35 x$
b) $f(x)=3 x\left(x^{2}-49\right)$
c) $f(x)=2 x^{2}-x-15$
d) $P(x)=8 x^{2}+14 x-15$
5. Use a graphing calculator to find the zeros (as exact values) of the following functions.
a) $f(x)=18 x^{2}-5 x-7$
b) $g(x)=3 x^{3}-11 x^{2}+6 x$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

274 Quadratic Functions and Equations Lesson \#1: Connecting Zeros, Roots, and x-intercepts
6. In each case, the graph of a function with $y=f(x)$ is shown. The x and y-intercepts of the graph are integers. Determine

- the zeros of the function
- the y-intercept of the graph of the function
- the equation of the function in factored form
a)

b)

c)

7. Use a graphing calculator to write the equation in factored form.
a) $y=2 x^{2}-3 x-9$
b) $y=5 x^{3}-7 x^{2}-21 x-9$

Multiple 8. The zeros of the function $f(x)=2(x-3)(4 x+7)$ are
A. $3,-\frac{7}{4}$
B. $-3, \frac{7}{4}$
C. $0,3,-\frac{7}{4}$
D. $2,3,-\frac{7}{4}$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Quadratic Functions and Equations Lesson \#1: Connecting Zeros, Roots, and x-intercepts
9. The roots of the equation $3 x(x+1)=6$ are
A. $0,-1$
B. 2,5
C. $2,-1$
D. $-2,1$
10. The least possible zero of the function $f(x)=2 x^{3}-7 x^{2}+3 x$ is
A. 0

R $\underline{1}$
A. 0
B. $\frac{1}{2}$
C. 3
D. -3

Numerical 11. The y-intercept of the graph of the function $f(x)=(x+4)(3-2 x)(x+1)$,
Response to the nearest whole number, is \qquad -
(Record your answer in the numerical response box from left to right.)

Answer Key

1. a) x-intercepts are $-6,4$ and y-intercept is -24 . b) $-6,4$
2. a) $-3,0$
b) 2,3
c) $-10,0,2$
d) $-\frac{3}{2}, \frac{1}{2}$
3. a) -15
b) $-\frac{8}{5}, \frac{8}{5}$
c) $-1, \frac{5}{2}$
d) $-\frac{1}{2}, 0,3$
4. a) i) 0,7
ii) 0
b) i) $-7,0,7 \quad$ ii) 0
c) i) $-\frac{5}{2}, 3 \quad$ ii) -15
$\begin{array}{ll}\text { d) i) }-\frac{5}{2}, \frac{3}{4} & \text { ii) }-15\end{array}$
5. a) $-\frac{1}{2}, \frac{7}{9}$
b) $0, \frac{2}{3}, 3$
6. a) zero: 3
y-intercept: 6
$f(x)=-2(x-3)$
b) zeros: $-2,4$ y-intercept: -16 $f(x)=2(x+2)(x-4)$
c) zeros: $-2,3,4$
y-intercept: 24
$f(x)=(x+2)(x-3)(x-4)$
7. a) $y=(2 x+3)(x-3)$
b) $y=(5 x+3)(x-3)(x+1)$
8. A
9. D
10. A
11. | 1 | 2 | | |
| :--- | :--- | :--- | :--- |

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Quadratic Functions and Equations Lesson \#1: Connecting Zeros, Roots, and x-intercepts

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

