Quadratic Functions and Equations Lesson \#6: Solving Quadratic Equations - The Quadratic Formula

In previous lessons we have determined the roots of quadratic equations by graphing, and by factoring using inspection or decomposition.

In this lesson we will use

- the square root method
- the completing the square method
- the quadratic formula
to solve quadratic equations.

Review

Solve the equation $3 x^{2}+13 x-10=0$ by graphing Use the sketch to illustrate your solution.

$$
x_{\text {int }}=-5,2 / 3
$$

Solve the following equations by factoring.
a) $x^{2}+7 x-18=0$
$(x+9)(x-2)=0^{-\frac{x+t}{187}}$
b) $\begin{array}{ll}3 x^{2}+13 x-10 & =0 \\ 3 x^{2}+15 x-2 x-10 & =0 \quad\end{array} \quad \frac{x}{-30} 11+$
$x=-9,2$
$3 x(x+5)-2(x+5)=0$
$(x+5)(3 x-2)=0$

$$
x=-5,2 / 3
$$

The Square Root Method

The solution to the equation $x^{2}=k$ is found by taking the square root of each side to get $x= \pm \sqrt{k}$.

Use the square root method to solve the following quadratic equations.
a) $\begin{aligned} 3 x^{2}=\frac{27}{3} \\ \\ \sqrt{x^{2}}=\sqrt[+]{9}\end{aligned}$
b) $\left(2 x \sqrt{1)^{2}=64} \sqrt[\pm]{ }\right.$
c) $(x+3)^{2}-8=0$

$$
2 x-1= \pm 8
$$

$$
\begin{array}{cccc}
x= \pm 3 & 2 x-1=8 & \text { or } & 2 x-1=-8 \\
x=3,-3 & 2 x=9 & 2 x=-7 \\
x=9 / 2 & x=-7 / 2
\end{array}
$$

Completing the Square Method

This is an extension of the method used in Class Ex. \#cs).

Class Ex. \#4
a) Explain why the quadratic equation $3 x^{2}-12 x-8=0$ cannot be solved by factoring.

b) Solve the equation $3 x^{2}-12 x-8=0$ by expressing the left side in completed square form and then using the square root method to complete solving the equation.

$$
\begin{aligned}
& 3 x^{2}-12 x-8 \\
& 3\left(x^{2}-4 x+4-4\right)-8 \\
= & 3(x-2)^{2}-12-8 \\
= & 3(x-2)^{2}-20
\end{aligned}
$$

$$
\frac{-4}{2}=(-2)^{2}=4
$$

$$
\Rightarrow \text { solve for } x
$$

$$
3(x-2)^{2}-20=0
$$

$$
3(x-2)^{2}=20
$$

$$
\sqrt{(x-2)^{2}}=\frac{20}{3}
$$

$$
\begin{aligned}
& x-2= \pm \sqrt{\frac{20}{3}} \\
& x=2 \pm \sqrt{\frac{20}{3}}
\end{aligned}
$$

Complete Assignment Questions \#1-\#4

Developing the Quadratic Formula

We will use the completing the square method to develop a formula that can be used to solve any quadratic equation of the form $a x^{2}+b x+c=0$.

Solve the following equations by completing the square.
a) $2 x^{2}=8 x+5=0$
b) $a x^{2}+b x+c=0$

The solution to Class Ex. \#1b) is a formula which can be used to solve any quadratic equation of the form $a x^{2}+b x+c=0$. The formula is known as the quadratic formula.

Solving a quadratic equation by completing the square is rarely used as the quadratic formula is usually a more efficient method.

Solving a quadratic equation by completing the square is rarely used as the quadratic formula is usually a more efficient method.

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.
310 Quadratic Functions and Equations Lesson \#6: The Quadratic Formula

The Quadratic Formula

The quadratic equation $a x^{2}+b x+c=0, a \neq 0$ has the roots

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Find the roots of the following equations using the quadratic formula. Give answers as exact values in simplest form and to the nearest tenth.
a) $x^{2}+2 x-1=0$ $a=1 \quad b=2 \quad c=-1$ $x=-b \pm \sqrt{b^{2}-4 a c}$

$$
=\frac{-2 \pm \sqrt{2^{2}-4(1)(-1)}}{2(1)}
$$

$$
\begin{aligned}
& =\frac{-2 \pm \sqrt{4+4}}{2} \\
& =\frac{-2 \pm \sqrt{8}}{2} \rightarrow \sqrt{4 \cdot 2}=2 \sqrt{2}
\end{aligned}
$$

$$
=\frac{-2 \pm 2 \sqrt{2}}{2}=-1 \pm \sqrt{2}
$$

$$
x=-1 \pm \sqrt{2} \text { valve }
$$

$$
x=-1+\sqrt{2}=0.4
$$

$$
x=-1-\sqrt{2}=-2.4
$$

$$
x=0.4,-2.4 \begin{aligned}
& \text { neorest } \\
& \text { tenth }
\end{aligned}
$$

b) $4 x^{2}-12 x+3=0$

c) $4 x^{2}=3(4 x+5)$

$$
\begin{array}{ll}
x=\frac{3 \pm \sqrt{6}}{2} & x=\frac{12 \pm 8 \sqrt{6}}{8} \\
x=\frac{3+\sqrt{6}}{2}=2.7 & x=\frac{3 \pm 2 \sqrt{6}}{2}
\end{array}
$$

$$
\begin{aligned}
& 4 x^{2}=12 x+15 \\
& 4 x^{2}-12 x-15=0 \\
& a=4 \quad b=-12 \quad c=-15 \\
& x=\frac{-(-12) \pm \sqrt{(-12)^{2}-4(4)(-15)}}{2(4)} \\
& x=\frac{12 \pm \sqrt{144+240+} \text { if under radical }}{8} \quad \text { is regarive, +hen } \\
& x=\frac{12 \pm \sqrt{384}}{8} \rightarrow \sqrt{64.6} \\
& x=\frac{12 \pm 8 \sqrt{6}}{8} \\
& x=\frac{3 \pm 2 \sqrt{6}}{2} \\
& x=(3+2 \sqrt{6}) \div 2=3.9 \\
& x=(3-2 \sqrt{6}) \div 2=-0.9
\end{aligned}
$$

Find the zeros of the quadratic function $f(x)=-3 x^{2}+4 x+1$. Give answers as exact values in simplest form and to the nearest hundredth.

Complete Assignment Questions \#5-\#13

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Assignment

1. Solve the equation $2 x^{2}-32=0$ by
a) graphing
b) factoring
c) the square root method
2. Solve the following equations by the square root method. Answer using exact values in simplified form.
a) $4 x^{2}=9$
b) $3 x^{2}-12=0$
c) $\frac{1}{2} x^{2}-12=0$
d) $(x-5)^{2}=36$
e) $2(1-x)^{2}=32$
f) $3(2 x+1)^{2}=24$
3. Use the completing the square method to solve the following quadratic equations. Answer using exact values.
a) $x^{2}+6 x+3=0$
b) $4 x^{2}-8 x-5=0$
c) $-4 x^{2}+16 x-15=0$
a) $x^{2}+6 x+3=0$
b) $4 x^{2}-8 x-5=0$
c) $-4 x^{2}+16 x-15=0$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

312 Quadratic Functions and Equations Lesson \#6: The Quadratic Formula
4. Determine, to the nearest tenth, the x-intercepts of the graph of
the function $f(x)=x^{2}-10 x+1$
5. Solve the equation $x^{2}-3 x-10=0$ by using
a) inspection
b) the quadratic formula
6. Solve the equation $4 x^{2}-11 x-3=0$ by using
a) decomposition
b) the quadratic formula
7. Find the exact roots of the equation $6 x^{2}+5 x+1=0$ by using
a) graphing
b) the quadratic formula

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.
Quadratic Functions and Equations Lesson \#6: The Quadratic Formula 313
8. Find the roots of the following quadratic equations (to the nearest tenth) using the quadratic formula.
a) $2 x^{2}+x-4=0$
b) $2 x^{2}-3 x-4=0$
c) $10 t^{2}=7 t+1$
9. Solve the following quadratic equations (as exact values) using the quadratic formula.
a) $x^{2}-10 x-15=0$
b) $x^{2}+6 x+17=0$
c) $3 x^{2}-12 x+11=0$
10. Find the zeros of the following quadratic functions.

Give answers as exact values in simplest form and to the nearest hundredth.
a) $f(x)=x^{2}+20 x+15$
b) $f(x)=5 x^{2}+12 x-5$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.
314 Quadratic Functions and Equations Lesson \#6: The Quadratic Formula
Multiple 11. The roots of the quadratic equation $d x^{2}+e x+f=0$ are
Choice
A. $x=\frac{e \pm \sqrt{e^{2}-4 d f}}{2 d}$
B. $x=\frac{-e \pm \sqrt{e^{2}-4 d f}}{2 d}$
C. $x=\frac{e \pm \sqrt{e^{2}+4 d f}}{2 d}$
D. $x=\frac{-e \pm \sqrt{e^{2}+4 d f}}{2 d}$
12. The zeros of the quadratic function $f(x)=6 x^{2}+2 x-1$ are
A. $\frac{-1 \pm \sqrt{14}}{6}$

- $-1 \pm 2 \sqrt{7}$
M. 6
B. $\frac{-1 \pm 2 \sqrt{7}}{6}$
C. $\frac{-1 \pm \sqrt{7}}{6}$
D. $\frac{-2 \pm \sqrt{7}}{6}$

Numerical 13. The quadratic equation $2 x^{2}+15 x+p=0$ has a root of $-\frac{1}{2}$ when p has
Response the whole number value of \qquad .
(Record your answer in the numerical response box from left to right.)

Answer Key

1. ± 42. a) $x= \pm \frac{3}{2}$
b) $x= \pm 2$
c) $x= \pm 2 \sqrt{6}$
d) $x=-1,11$
e) $x=-3,5$ f) $x=-\frac{1}{2} \pm \sqrt{2}$
2. a) $-3 \pm \sqrt{6}$
b) $x=-\frac{1}{2}, \frac{5}{2}$
c) $\frac{3}{2}, \frac{5}{2}$
3. $0.1,9.9$
4. a) $-2,5$
b) $-2,5$
5. a) $-\frac{1}{4}, 3$
b) $-\frac{1}{4}, 3$
6. a) $-\frac{1}{3},-\frac{1}{2}$
b) $-\frac{1}{3},-\frac{1}{2}$
7. a) $-1.7,1.2$ b) $-0.9,2.4$ c) $-0.1,0.8$
8. a) $5 \pm 2 \sqrt{10}$
b) no solution c) $\frac{6 \pm \sqrt{3}}{3}$
10.a) $-10 \pm \sqrt{85} \quad-0.78,-19.22$
b) $\frac{-6 \pm \sqrt{61}}{5} \quad-2.76,0.36$
11.B
12.C
9.

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

