Quadratic Functions and Equations Lesson #6: Solving Quadratic Equations - The Quadratic Formula

In previous lessons we have determined the roots of quadratic equations by graphing, and by factoring using inspection or decomposition.

In this lesson we will use

- the square root method
- the completing the square method
- the quadratic formula

to solve quadratic equations.

Review

 Class Ex. #1

 Solve the equation
$$3x^2 + 13x - 10 = 0$$
 by graphing.

 Use the sketch to illustrate your solution.

 Xint = -5, $\frac{2}{3}$

Solve the following equations by factoring.

Class Ex. #2

a)
$$x^{2} + 7x - 18 = 0$$

 $(X+9)(X-2)=0^{-\frac{x+t}{1017}}$
b) $3x^{2} + 13x - 10 = 0$
 $3x^{2} + 15x - 2x + 0 = 0$
 $3x(x+5) - 2(x+5) = 0$
 $(X+5)(3x-2) = 0$
 $\overline{x + 5}(3x - 2x - 3) = 0$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

308 Quadratic Functions and Equations Lesson #6: *The Quadratic Formula*

The Square Root Method

The solution to the equation $x^2 = k$ is found by taking the square root of each side to get $x = \pm \sqrt{k}$.

Use the square root method to solve the following quadratic equations.

a) $3x^2 = 27$ 3 3	b) $(2x+1)^2 = 64^{\pm}$	c) $(x+3)^2 - 8 = 0$
$\int \frac{3}{\sqrt{x^2}} = \frac{1}{\sqrt{9}}$	$\partial x - 1 = \pm \vartheta$	
√x =√1 x=±3	2x-1=8 or 2x-1=	-8
$\sqrt{-2}$	2x=9 $2x=$	-7
x= 3,=5	X = 92 X= -	3
	$X = \frac{9}{3}, -\frac{7}{3}$	

Completing the Square Method

This is an extension of the method used in Class Ex. #3c).

Class Ex. #3

a) Explain why the quadratic equation $3x^2 - 12x - 8 = 0$ cannot be solved by factoring.

- Capit find $\begin{cases} x + t \\ + s \\ work \end{cases}$ $\begin{cases} x + t \\ 241 12 \\ + 6 \\ 4 \cdot 6 \\ \end{cases}$
- **b**) Solve the equation $3x^2 12x 8 = 0$ by expressing the left side in completed square form and then using the square root method to complete solving the equation.

$$3x^{2}-12x-8 = 4$$

$$3(x^{2}-4x+4-4)-8 = 3(x-2)^{2}-12-8$$

$$= 3(x-2)^{2}-12-8 = 3(x-2)^{2}-20$$

$$= 3(x-2)^{2}-20$$

$$= 3(x-2)^{2}-20$$

$$3(x-2)^{2}-20 = 0$$

$$3(x-2)^{2}=20$$

$$\sqrt{(x-2)^{2}}=20$$

Complete Assignment Questions #1 - #4

Convright @ by Absolute Value Publications This book is NOT covered by the Cancony acreement

Complete Assignment Questions #1 - #4

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Quadratic Functions and Equations Lesson #6: The Quadratic Formula 309

Developing the Quadratic Formula

We will use the completing the square method to develop a formula that can be used to solve any quadratic equation of the form $ax^2 + bx + c = 0$.

Solve the following equations by completing the square. **a)** $2x^2 = 8x + 5 = 0$ **b)** $ax^2 + bx + c = 0$

The solution to Class Ex. #1b) is a formula which can be used to solve any quadratic equation of the form $ax^2 + bx + c = 0$. The formula is known as the **quadratic formula**.

Solving a quadratic equation by completing the square is rarely used as the quadratic formula is usually a more efficient method.

Solving a quadratic equation by completing the square is rarely used as the quadratic formula is usually a more efficient method.

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

310 Quadratic Functions and Equations Lesson #6: *The Quadratic Formula*

The Quadratic Formula

The quadratic equation $ax^2 + bx + c = 0$, $a \neq 0$ has the roots

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Find the roots of the following equations using the quadratic formula. Give answers as exact values in simplest form and to the nearest tenth.

a)
$$x^{2} + 2x - 1 = 0$$

 $a = 1$ $b = 2$ $c = -1$
 $x = -\frac{b \pm \sqrt{b^{2} + 4ac}}{2a}$
 $= -\frac{2 \pm \sqrt{b^{2} - 4ac}}{2a}$
 $= -\frac{1 \pm \sqrt{a}}{2a}$
 $x = \frac{3 \pm \sqrt{b}}{2a}$
 $x = (3 \pm a\sqrt{b})^{2} = -0.9$
 $= -0.9$
 $= -0.9$
 $= -0.9$
 $= -0.9$

Find the zeros of the quadratic function $f(x) = -3x^2 + 4x + 1$. Give answers as exact values in simplest form and to the nearest hundredth. tom orraw: 17/8 Man: 19 Tus: Quiz 15-9 Wed: Review * Thurs: Unit test

Complete Assignment Questions #5 - #13

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Quadratic Functions and Equations Lesson #6: The Quadratic Formula 311

Assignment

- 1. Solve the equation $2x^2 32 = 0$ by
 - **a**) graphing **b**) factoring **c**) the square root method

2. Solve the following equations by the square root method. Answer using exact values in simplified form.

c) $\frac{1}{2}x^2 - 12 = 0$ **b**) $3x^2 - 12 = 0$ **a**) $4x^2 = 9$

d)
$$(x-5)^2 = 36$$
 e) $2(1-x)^2 = 32$ **f**) $3(2x+1)^2 = 24$

3. Use the completing the square method to solve the following quadratic equations. Answer using exact values.

a)
$$x^2 + 6x + 3 = 0$$
 b) $4x^2 - 8x - 5 = 0$ **c**) $-4x^2 + 16x - 15 = 0$

a)
$$x^2 + 6x + 3 = 0$$
 b) $4x^2 - 8x - 5 = 0$ **c**) $-4x^2 + 16x - 15 = 0$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

- 312 Quadratic Functions and Equations Lesson #6: The Quadratic Formula
- 4. Determine, to the nearest tenth, the *x*-intercepts of the graph of the function $f(x) = x^2 10x + 1$
- 5. Solve the equation $x^2 3x 10 = 0$ by using a) inspection b) the quadratic formula

6. Solve the equation $4x^2 - 11x - 3 = 0$ by using a) decomposition b) the quadratic formula 7. Find the exact roots of the equation $6x^2 + 5x + 1 = 0$ by using a) graphing b) the quadratic formula

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Quadratic Functions and Equations Lesson #6: The Quadratic Formula 313

- 8. Find the roots of the following quadratic equations (to the nearest tenth) using the quadratic formula.
 - **a**) $2x^2 + x 4 = 0$ **b**) $2x^2 - 3x - 4 = 0$ **c**) $10t^2 = 7t + 1$

9. Solve the following quadratic equations (as exact values) using the quadratic formula. a) $x^2 - 10x - 15 = 0$ b) $x^2 + 6x + 17 = 0$ c) $3x^2 - 12x + 11 = 0$ 10. Find the zeros of the following quadratic functions. Give answers as exact values in simplest form and to the nearest hundredth.

a) $f(x) = x^2 + 20x + 15$ **b**) $f(x) = 5x^2 + 12x - 5$

Copyright © by Absolute Value Publications. This book is **NOT** covered by the Cancopy agreement.

314 Quadratic Functions and Equations Lesson #6: The Quadratic Formula

11. The roots of the quadratic equation
$$dx^2 + ex + f = 0$$
 are
A. $x = \frac{e \pm \sqrt{e^2 - 4df}}{2d}$
B. $x = \frac{-e \pm \sqrt{e^2 - 4df}}{2d}$
C. $x = \frac{e \pm \sqrt{e^2 + 4df}}{2d}$
D. $x = \frac{-e \pm \sqrt{e^2 + 4df}}{2d}$

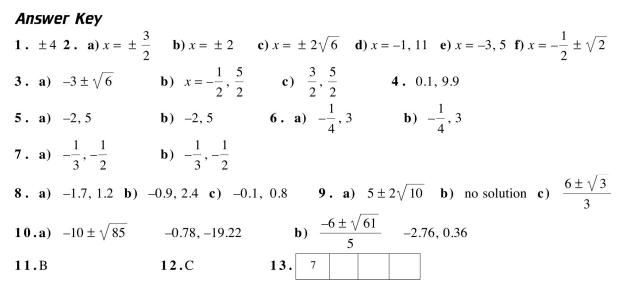
12. The zeros of the quadratic function $f(x) = 6x^2 + 2x - 1$ are

A.
$$\frac{-1 \pm \sqrt{14}}{6}$$

- $-1 \pm 2\sqrt{7}$

B.
$$\frac{-1 \pm 2\sqrt{7}}{6}$$
C.
$$\frac{-1 \pm \sqrt{7}}{6}$$
D.
$$\frac{-2 \pm \sqrt{7}}{6}$$

The quadratic equation $2x^2 + 15x + p = 0$ has a root of $-\frac{1}{2}$ when *p* has the whole number value of ______. (Record your answer in the numerical response box from left to right.)



Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.