Quadratic Functions and Equations Lesson \#5: Converting from General Form to Standard Form by Completing the Square

Review

- The general form of a quadratic function has the equation $y=a x^{2}+b x+c$
- The standard form of a quadratic function has the equation $y=a(x-p)^{2}+q$.
- Writing a function in standard form enables us to analyze the function more easily e.g. we can determine the vertex, axis of symmetry and maximum / minimum value of the function.

Completing the Square

$(x+4)^{2}$ and $(x-5)^{2}$ are examples of perfect squares.
a) Expand the following perfect squares.

$$
\begin{aligned}
& (x+4)^{2}=(x+4)(x+4)=\quad x^{2}+8 x+1(6+7)^{2}=(x+7)(x+7)=\quad x^{2}+14 x+49 \\
& \left.(x-5)^{2}=(x-5)(x-5)=\quad x^{2}-10 x+25-1\right)^{2}=(x-1)(x-1)=\frac{x^{2}-2 x+1}{} \\
& (x+a)^{2}==x^{2}+2 a x+a^{2}(x-a)^{2}=\quad x^{2}-2 a x+a^{2}
\end{aligned}
$$

b) Factor the following expressions into perfect squares.

$$
\begin{aligned}
& \begin{array}{c}
x^{2}+6 x+9= \\
x^{\prime}+\quad(x+3)^{2} \\
x^{2}-4 x+4= \\
=
\end{array} \\
& -2 \cdot 2 \cdot x \\
& \begin{array}{c}
x^{2}+12 x+36= \\
x^{\prime} \quad(x+6)^{2} \\
x^{2}-16 x+64=x
\end{array} \\
& 2 \cdot-8 \cdot x
\end{aligned}
$$

c) Add an appropriate constant so that the following expressions can be written as perfect squares.

The process of adding a constant term to a quadratic expression to make it a perfect square is called completing the square
To complete the square of $x^{2}+b x$, add $\left(\frac{1}{2} \text { coefficient of } x\right)^{2}$
called comprewng tune square
To complete the square of $x^{2}+b x$, add $\left(\frac{1}{2} \text { coefficient of } x\right)^{2}$
ie. add $\left(\frac{1}{2} b\right)^{2}$ to give $\left(x+\frac{1}{2} b\right)^{2}$.
Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

302 Quadratic Functions and Equations Lesson \#5: Completing the Square

Writing $f(x)=x^{2}+b x+c$ in Standard Form by Completing the Square

Use the following process to convert a function of the form $f(x)=x^{2}+b x+c$ into standard form.

Express $y=x^{2}+10 x+16$ in completed square form.
Use a graphing calculator to verify that both equations are represented by identical graphs.

$$
\begin{array}{rlr}
y & =x^{2}+10 x & +16 \\
& =x^{2}+10 x+25-25+16 & \frac{1}{2}(10)=5 \\
& =(x+5)^{2}-9 & 5^{2}=25
\end{array}
$$

A function, f, is defined by $f(x)=x^{2}-9 x-20$.
Determine the minimum value of f by writing the function in standard form.

$$
\begin{aligned}
f(x) & =\underbrace{x^{2}-9 x+\frac{81}{4}-\frac{81}{4}-20} \quad \quad-9\left(\frac{1}{2}\right)=\left(\frac{-9}{2}\right)^{2}=\frac{81}{4} \\
& =\left(x-\frac{9}{2}\right)^{2}-\frac{81}{4}-20 \frac{80}{4} \\
& =\left(x-\frac{9}{2}\right)^{2}-\frac{161}{4} \quad \text { minimum value is } \frac{-161}{4}
\end{aligned}
$$

> minimum value is $\frac{-161}{4}$ 1, aba $9: 15$

Complete Assignment Questions \#1 - \#4

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Writing $f(x)=a x^{2}+b x+c$ in Standard Form by Completing the Square

Convert $f(x)=3 x^{2}-18 x+20$ to standard form by completing the square.
Determine whether the graph of the function f has a maximum or minimum value and state the value.

$$
\begin{aligned}
& =3 x^{2}-18 x+20 \\
& =3\left(x^{2}-6 x+9-9\right)+20 \\
& =3(x-3)^{2}-27+20 \\
& =3(x-3)^{2}-7
\end{aligned}
$$

$$
-6\left(\frac{1}{2}\right)=(-3)^{2}=9
$$

Convert $y=7+10 x-2 x^{2}$ to standard form by completing the square. In what direction does the parabola open? What are the coordinates of the vertex of the parabola?

$$
\begin{aligned}
y & =-2 x^{2}+10 x+7 \\
& =-2\left(x^{2}-5 x+\frac{25}{4}-\frac{25}{4}\right)+7 \\
& =-2\left(x-\frac{5}{2}\right)^{2}+\frac{50}{4}+7
\end{aligned} \frac{25}{2}+\frac{14}{2} .
$$

Complete Assignment Questions \#5-\#9

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

304 Quadratic Functions and Equations Lesson \#5: Completing the Square

Assignment

1. What number must be added to each to make a perfect square?
a) $x^{2}+8 x$
b) $x^{2}-24 x$
c) $x^{2}+40 x$
d) $x^{2}-x$
e) $x^{2}+\frac{1}{2} x$
f) $x^{2}-\frac{2}{3} x$
2. Complete the square in each part.
a) $x^{2}+6 x+\ldots=(x+\ldots)^{2}$
b) $x^{2}-20 x+\ldots=\left(\begin{array}{ll}x & -\end{array}\right)^{2}$
c) $x^{2}+5 x+\ldots=\left(\begin{array}{ll}x & -\end{array}\right)^{2}$
d) $x^{2}-9 x+\ldots=\left(\begin{array}{ll}x \quad-\quad\end{array}\right)^{2}$
e) $x^{2}+0.6 x+\ldots=\left(\begin{array}{ll}x & -\end{array}\right)^{2}$
f) $x^{2}-\frac{3}{4} x+\ldots=(x$
$-)^{2}$
3. Express the following in completed square form.
a) $y=x^{2}+10 x+3$
b) $y=x^{2}-4 x-21$
c) $y=x^{2}+14 x-2$
d) $f(x)=x^{2}+9 x+22$
e) $g(x)=x^{2}-x+1$
f) $h(x)=x^{2}+b x+c$
4. Express $f(x)=x^{2}-14 x-40$ in completed square form. Hence state the coordinates of the vertex and the equation of the axis of symmetry of the graph of the function.

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.
5. Express the following in completed square form.
a) $f(x)=2 x^{2}+12 x+5$
b) $y=3 x^{2}-18 x-19$
c) $P(x)=2 x^{2}+14 x-11$
d) $y=-x^{2}+10 x+20$
e) $y=-4 x^{2}-8 x+7$
f) $g(x)=11 x-x^{2}$

Multiple 6. When $y=2 x^{2}+5 x+10$ is converted to the form $y=a(x-p)^{2}+q$, the value of q is
Choice
A. -2.5
B. 3.75
C. 6.875
D. 8.4375
7. The x-coordinate of the vertex of the graph of the function $f(x)=b x-4 x^{2}$ is
A. $\frac{b}{4}$
B. $\frac{b}{8}$
C. $\frac{b}{16}$
D. $\frac{b^{2}}{16}$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

306 Quadratic Functions and Equations Lesson \#5: Completing the Square
8. A high school student was asked to arrange the equation $y=-3 x^{2}-6 x-5$ in the form $y=a(x-p)^{2}+q$ by completing the square. The student's procedure is shown:

$$
\begin{array}{ll}
\text { Step I: } & y=-3\left(x^{2}+2 x \quad\right)-5 \\
\text { Step II: } & y=-3\left(x^{2}+2 x+1-1\right)-5 \\
\text { Step III: } & y=-3(x+1)^{2}-5-1 \\
\text { Step IV: } & y=-3(x+1)^{2}-6
\end{array}
$$

The student made an error in
A. Step I
B. Step II
C. Step III
D. Step IV

Numerical 9. The maximum value, to the nearest tenth, of the function $g(x)=-5 x^{2}+10 x+12$ is

Numerical 9. The maximum value, to the nearest tenth, of the function $g(x)=-5 x^{2}+10 x+12$ is
Response \qquad (Record your answer in the numerical response box from left to right.) \square

Answer Key

1. a) 16
b) 144
c) 400
d) $\frac{1}{4}$
e) $\frac{1}{16}$
f) $\frac{1}{9}$
2. a) $x^{2}+6 x+9=(x+3)^{2}$
b) $x^{2}-20 x+100=(x-10)^{2}$
c) $x^{2}+5 x+\frac{25}{4}=\left(x+\frac{5}{2}\right)^{2}$
d) $x^{2}-9 x+\frac{81}{4}=\left(x-\frac{9}{2}\right)^{2}$
e) $x^{2}+0.6+0.09=(x+0.3)^{2}$
f) $x^{2}-\frac{3}{4} x+\frac{9}{64}=\left(x-\frac{3}{8}\right)^{2}$
3. a) $y=(x+5)^{2}-22$
b) $y=(x-2)^{2}-25$
c) $y=(x+7)^{2}-51$
d) $f(x)=\left(x+\frac{9}{2}\right)^{2}+\frac{7}{4}$
e) $g(x)=\left(x-\frac{1}{2}\right)^{2}+\frac{3}{4}$
f) $g(x)=\left(x+\frac{b}{2}\right)^{2}+c-\frac{b^{2}}{4}$
4. $(7,-89), x=7$
5. a) $f(x)=2(x+3)^{2}-13$
b) $y=3(x-3)^{2}-46$
c) $P(x)=2\left(x+\frac{7}{2}\right)^{2}-\frac{71}{2}$
d) $y=-(x-5)^{2}+45$
e) $y=-4(x+1)^{2}+11$
f) $g(x)=-\left(x-\frac{11}{2}\right)^{2}+\frac{121}{4}$
6. C
7. B
8. C
9.

1	7	\cdot	0

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

