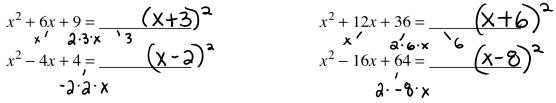
Quadratic Functions and Equations Lesson #5: Converting from General Form to Standard Form by Completing the Square

Review

- The general form of a quadratic function has the equation $y = ax^2 + bx + c$.
- The standard form of a quadratic function has the equation $y = a(x-p)^2 + q$.
- Writing a function in standard form enables us to analyze the function more easily e.g. we can determine the vertex, axis of symmetry and maximum / minimum value of the function.


Completing the Square

 $(x+4)^2$ and $(x-5)^2$ are examples of **perfect squares.**

a) Expand the following perfect squares.

$$(x+4)^{2} = (x+4)(x+4) = \underbrace{\chi^{2} + 8\chi^{2} + (6+7)^{2}}_{(x-5)^{2}} = (x+7)(x+7) = \underbrace{\chi^{2} + 14\chi^{2} + 49}_{(x-5)^{2}} = (x-5)(x-5) = \underbrace{\chi^{2} - 10\chi^{2} + 35}_{(x-6)^{2}} = (x-1)(x-1) = \underbrace{\chi^{2} - 3\chi^{2} + 1}_{(x+a)^{2}}$$

b) Factor the following expressions into perfect squares.

c) Add an appropriate constant so that the following expressions can be written as perfect squares.

$$x^{2} + 2x + \underline{-} = \underline{|} (X + 1)^{2}$$

$$x^{2} + 18x + \underline{-} = \underline{81} (X + 9)^{2}$$

$$x^{2} - 3x + \underline{-} = \underline{4} (X - \frac{3}{2})^{2}$$

$$\frac{20}{a} = -\frac{3}{2} x^{2} - \frac{1}{4}x + \underline{-} = \frac{64}{4} (X - \frac{1}{6})^{2}$$

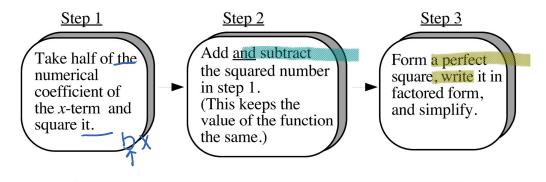
$$\frac{20}{a} = -\frac{1}{4} \frac{1}{a} = -\frac{1}{6}$$

$$\frac{2}{a} = -\frac{1}{4} \frac{1}{a} = -\frac{1}{6}$$

The process of adding a constant term to a quadratic expression to make it a perfect square is called **completing the square**.

To complete the square of $x^2 + bx$, add $\left(\frac{1}{2} \text{ coefficient of } x\right)^2$

called completing the square.


To complete the square of $x^2 + bx$, add $\left(\frac{1}{2}\text{ coefficient of }x\right)^2$ i.e. add $\left(\frac{1}{2}b\right)^2$ to give $\left(x + \frac{1}{2}b\right)^2$.

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

302 Quadratic Functions and Equations Lesson #5: *Completing the Square*

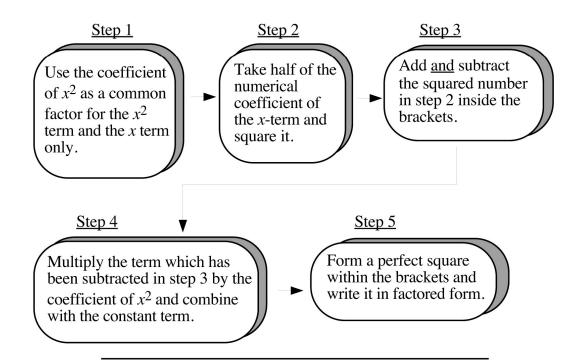
Writing $f(x) = x^2 + bx + c$ in Standard Form by Completing the Square

Use the following process to convert a function of the form $f(x) = x^2 + bx + c$ into standard form.

Class Ex. #1 Express $y = x^2 + 10x + 16$ in completed square form. Use a graphing calculator to verify that both equations are represented by identical graphs. $\begin{array}{c}
 \mathcal{Y} = & \chi^2 + 10x + 25 - 25 + 16 \\
 = & \chi^2 + 10x + 25 - 25 + 16 \\
 = & (\chi + 5)^2 - 9
\end{array}$

A function, f, is defined by $f(x) = x^2 - 9x - 20$. Determine the minimum value of f by writing the function in standard form. Vertex $f = -9(\frac{1}{2})^2 = \frac{81}{4}$ $= (\chi - \frac{9}{a})^2 - \frac{81}{4} - 20\frac{80}{4}$ $= (\chi - \frac{9}{a})^2 - \frac{161}{4}$ minimum value is $\frac{-161}{4}$

Quadratic Functions and Equations Page 2

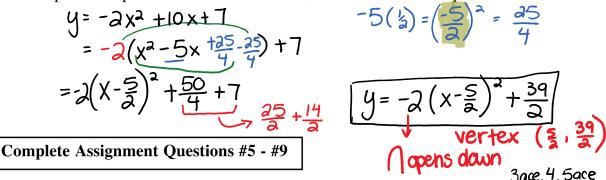


Complete Assignment Questions #1 - #4

Copyright © by Absolute Value Publications. This book is **NOT** covered by the Cancopy agreement.

Quadratic Functions and Equations Lesson #5: *Completing the Square* **303**

Writing $f(x) = ax^2 + bx + c$ in Standard Form by Completing the Square



Convert $f(x) = 3x^2 - 18x + 20$ to standard form by completing the square. Determine whether the graph of the function *f* has a maximum or minimum value and state the value.

$$= 3x^{2} - 18x + 20 -6(\frac{1}{2}) = (-3)^{2} = 9$$

= $3(x^{2} - 6x + 9 - 9) + 20$
= $3(x - 3)^{2} - 27 + 20$
= $3(x - 3)^{2} - 7$ minimum value because
'a'' is positive
min = -7

Convert $y = 7 + 10x - 2x^2$ to standard form by completing the square. In what direction does the parabola open? What are the coordinates of the vertex of the parabola?

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

304 Quadratic Functions and Equations Lesson #5: *Completing the Square*

Assignment

1. What number must be added to each to make a perfect square?

a) $x^2 + 8x$ **b**) $x^2 - 24x$ **c**) $x^2 + 40x$ **d**) $x^2 - x$ **e**) $x^2 + \frac{1}{2}x$ **f**) $x^2 - \frac{2}{3}x$

- 2. Complete the square in each part.
 - a) $x^{2} + 6x + _ = (x + _)^{2}$ b) $x^{2} - 20x + _ = (x _)^{2}$ c) $x^{2} + 5x + _ = (x _)^{2}$ d) $x^{2} - 9x + _ = (x _)^{2}$ e) $x^{2} + 0.6x + _ = (x _)^{2}$ f) $x^{2} - \frac{3}{4}x + _ = (x _)^{2}$
- **3.** Express the following in completed square form. **a)** $y = x^2 + 10x + 3$ **b)** $y = x^2 - 4x - 21$ **c)** $y = x^2 + 14x - 2$

d)
$$f(x) = x^2 + 9x + 22$$
 e) $g(x) = x^2 - x + 1$ **f**) $h(x) = x^2 + bx + c$

4. Express $f(x) = x^2 - 14x - 40$ in completed square form. Hence state the coordinates of the vertex and the equation of the axis of symmetry of the graph of the function.

Copyright © by Absolute Value Publications. This book is **NOT** covered by the Cancopy agreement.

Quadratic Functions and Equations Lesson #5: *Completing the Square* **305**

5. Express the following in completed square form. a) $f(x) = 2x^2 + 12x + 5$ b) $y = 3x^2 - 18x - 19$ c) $P(x) = 2x^2 + 14x - 11$

d)
$$y = -x^2 + 10x + 20$$
 e) $y = -4x^2 - 8x + 7$ **f**) $g(x) = 11x - x^2$

Multiple Choice 6. When $y = 2x^2 + 5x + 10$ is converted to the form $y = a(x - p)^2 + q$, the value of q is A. - 2.5 B. 3.75 C. 6.875

- **D.** 8.4375
- 7. The *x*-coordinate of the vertex of the graph of the function $f(x) = bx 4x^2$ is
 - **A.** $\frac{b}{4}$ **B.** $\frac{b}{8}$ **C.** $\frac{b}{16}$ **D.** $\frac{b^2}{16}$

Copyright © by Absolute Value Publications. This book is **NOT** covered by the Cancopy agreement.

- **306** Quadratic Functions and Equations Lesson #5: *Completing the Square*
- 8. A high school student was asked to arrange the equation $y = -3x^2 6x 5$ in the form $y = a(x p)^2 + q$ by completing the square. The student's procedure is shown:

<u>Step I</u>: $y = -3(x^2 + 2x) - 5$ <u>Step II</u>: $y = -3(x^2 + 2x + 1 - 1) - 5$ <u>Step III</u>: $y = -3(x + 1)^2 - 5 - 1$ <u>Step IV</u>: $y = -3(x + 1)^2 - 6$

The student made an error in

A.	Step	Ι
B.	Step	II
C.	Step	III
D.	Step	IV

Numerical 9. The maximum value, to the nearest tenth, of the function $g(x) = -5x^2 + 10x + 12$ is

(Record your answer in the numerical response box from left to right.)

	I I
	I I
	I I

Answer Key

1. a) 16 b) 144 c)	400 d) $\frac{1}{4}$ e) $\frac{1}{16}$ f) $\frac{1}{9}$	
2. a) $x^2 + 6x + 9 = (x+3)^2$	b) $x^2 - 20x + 100 = (x - 10)^2$	c) $x^2 + 5x + \frac{25}{4} = \left(x + \frac{5}{2}\right)^2$
d) $x^2 - 9x + \frac{81}{4} = \left(x - \frac{9}{2}\right)^2$	e) $x^2 + 0.6 + 0.09 = (x + 0.3)^2$	f) $x^2 - \frac{3}{4}x + \frac{9}{64} = \left(x - \frac{3}{8}\right)^2$
3. a) $y = (x+5)^2 - 22$	b) $y = (x-2)^2 - 25$ c)	$y = (x + 7)^2 - 51$
d) $f(x) = \left(x + \frac{9}{2}\right)^2 + \frac{7}{4}$	e) $g(x) = \left(x - \frac{1}{2}\right)^2 + \frac{3}{4}$ f)	$g(x) = \left(x + \frac{b}{2}\right)^2 + c - \frac{b^2}{4}$
4. $(7, -89), x = 7$		
5. a) $f(x) = 2(x+3)^2 - 13$	b) $y = 3(x-3)^2 - 46$ c)	$P(x) = 2\left(x + \frac{7}{2}\right)^2 - \frac{71}{2}$
d) $y = -(x-5)^2 + 45$	e) $y = -4(x+1)^2 + 11$ f)	$g(x) = -\left(x - \frac{11}{2}\right)^2 + \frac{121}{4}$
6.C 7.B	8.C 9. 1 7	. 0

Copyright © by Absolute Value Publications. This book is **NOT** covered by the Cancopy agreement.