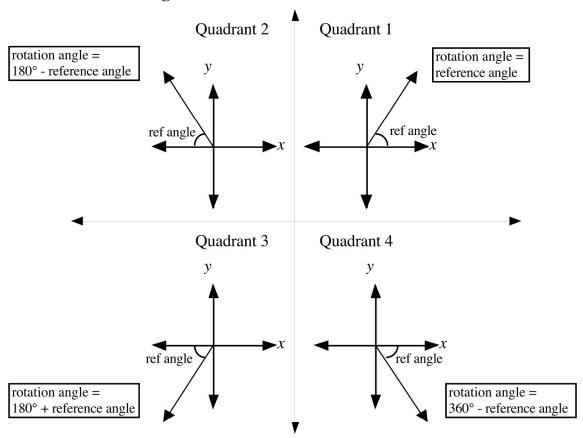
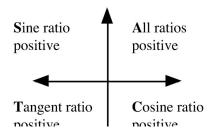
Trigonometry - Angles and Ratios Lesson #3: Applications of Reference Angles and the CAST Rule

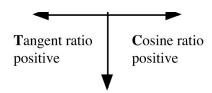

Overview

In this lesson, we use our knowledge of rotation and reference angles, and the CAST rule to:

- i) determine the exact trigonometric ratios for rotation angles from 0° to 360° given a point on the terminal arm.
- ii) determine trigonometric ratios for a rotation angle from 0° to 360° given a different trigonometric ratio for the angle.


Review

The reference angle for any rotation angle is the acute angle between the terminal arm of the rotation angle and the *x*-axis.



We can determine the sign of a trigonometric ratio in a particular quadrant:

- by the **CAST** rule or
- by remembering to "Add Sugar To Coffee"

- by the CAST rule or
- by remembering to "Add Sugar To Coffee"

The trigonometric ratios for an angle in standard position with a point P(x, y) on the terminal arm and OP = r are

$$\sin \theta = \frac{y}{r}$$

$$\sin \theta = \frac{y}{r} \qquad \cos \theta = \frac{x}{r} \qquad \tan \theta = \frac{y}{x}$$

$$\tan \theta = \frac{y}{x}$$

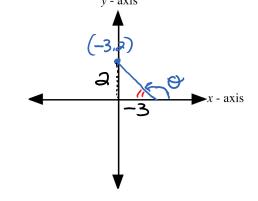
Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

180 Trigonometry - Angles and Ratios #3: Applications of Reference Angles and the CAST Rule

Exact Values of Trigonometric Ratios Given a Point on a Terminal Arm

In the previous lesson, we were able to determine the exact values of the trigonometric ratios given a point on the terminal arm of a rotation angle in quadrant one. In this lesson, we extend the method into quadrants two to four.

The point P(-3, 2) lies on the terminal arm of an angle θ in standard position. Complete the following procedure to determine the values of the primary trigonometric ratios.


- a) Sketch the rotation angle on the grid and mark the point P(-3, 2) on the terminal arm.
- **b**) Calculate the exact length of OP = r.

$$r^{2} = 3^{2} + (-3)^{2}$$

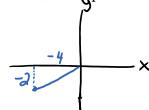
$$= 4 + 9$$

$$r^{2} = 13$$

$$r = \sqrt{13}$$

c) Use x = -3, y = 2 and r from above to write the three trigonometric ratios for angle θ .

$$Sin\theta = \frac{y}{r} = \frac{2}{\sqrt{13}} \text{ or } \frac{2\sqrt{13}}{13}$$


$$\cos \theta = \frac{x}{F} = \frac{-3}{\sqrt{13}}$$
 or $\frac{-3\sqrt{13}}{13}$

$$\tan \theta = \frac{9}{x} = \frac{2}{3}$$

The point (-4, -2) lies on the terminal arm of an angle θ in standard position. Determine the exact value of $\sin \theta$.

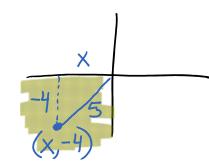
$$X=-4$$
, $y=-2$ $r=?$
 $r^{2}=(-4)^{2}+(-2)^{2}$
 $=16+4$

$$\Gamma'' = (-4)'' + (-3)''$$
= 16+4
$$\Gamma = \sqrt{30} = 25$$

$$\frac{45}{5} = \frac{-1}{\sqrt{5}} = \frac{-15}{5}$$
Sin0=\frac{9}{7} = \frac{-2}{2\sqrt{5}} = \frac{-1}{\sqrt{5}}

Complete Assignment Questions #1 - #3

Copyright © by Absolute Value Publications. This book is **NOT** covered by the Cancopy agreement.

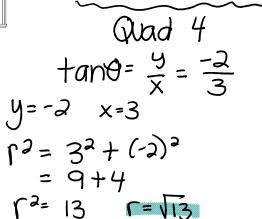

Trigonometry - Angles and Ratios #3: Applications of Reference Angles and the CAST Rule 181

Value of a Trigonometric Ratio Given a Different Trigonometric Ratio

Angle A terminates in the third quadrant with $\sin A = -\frac{4}{5}$. Complete the following procedure to determine the values of $\cos A$ and $\tan A$.

a) Since $\sin A = -\frac{4}{5} = \frac{y}{r}$, we know that the point (x, -4) lies on the terminal arm in the third quadrant with r = 5. Sketch a diagram, draw the reference triangle and mark x, y = -4, and r = 5 on the reference triangle.

b) Use $x^2 + y^2 = r^2$ to determine the value of x. (Note that in quadrant three, the value of x must be negative).


$$X^{2} = r^{2} - y^{2}$$
 $X^{2} = 35 - 16$ $X = \sqrt{9} = \pm 3$
 $X^{2} = 5^{2} - (-4)^{2}$ $X^{2} = 9$ $X = -3$

c) Use the values of x, y, and r to determine the exact values of $\cos A$ and $\tan A$.

$$x=-3$$
 $y=-4$ $r=5$
 $\cos A = \frac{x}{r} = -\frac{3}{5}$
 $\tan A = \frac{y}{x} = -\frac{4}{-3} = \frac{4}{3}$

If $\tan \theta = -\frac{2}{3}$ and $\cos \theta$ is positive, then find the exact value of $\sin \theta$.

$$\sin \theta = \frac{y}{r} = \frac{-2}{\sqrt{13}} = \frac{-2\sqrt{13}}{13}$$

Complete Assignment Questions #4 - #11

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

182 Trigonometry - Angles and Ratios #3: Applications of Reference Angles and the CAST Rule

Assignment

1. The point (8, -6) lies on the terminal arm of an angle θ in standard position. Determine the exact values of $\sin \theta$, $\cos \theta$, and $\tan \theta$.

2. The point (-1, -3) lies on the terminal arm of an angle θ in standard position. Determine the exact values of $\sin \theta$, $\cos \theta$, and $\tan \theta$.

3. The point (-16, 63) lies on the terminal arm of an angle A in standard position. Determine the exact value of $\cos A$.

4. If $\cos \theta = \frac{12}{13}$ and $270^{\circ} \le \theta \le 360^{\circ}$, then find the exact values of $\sin \theta$ and $\tan \theta$.

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Trigonometry - Angles and Ratios #3: Applications of Reference Angles and the CAST Rule 183

5. If $\sin \theta = -\frac{4}{7}$ and $\cos \theta$ is negative, then find the exact value of $\tan \theta$.

6. If $\tan A = -\frac{15}{2}$ and $0^{\circ} < A < 180^{\circ}$ then find the values of $\sin A$ and $\cos A$

6. If $\tan A = -\frac{15}{8}$ and $0^{\circ} \le A \le 180^{\circ}$, then find the values of $\sin A$ and $\cos A$.

7. If $\tan B = 0.8$ and $\cos B$ is negative, then find the exact value of $\sin B$.

8. If $\sin X = -\frac{1}{4}$ and $\tan X$ is negative, express $\cos X$ as an exact value.

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

- 184 Trigonometry Angles and Ratios #3: Applications of Reference Angles and the CAST Rule
- **9.** Solve for the required ratios in each of the following. Express each answer as an exact value with a rational denominator.
 - a) Angle θ terminates in the second quadrant. If $\tan \theta = -\frac{\sqrt{3}}{5}$, find $\sin \theta$ and $\cos \theta$.

a) Angle θ terminates in the second quadrant. If $\tan \theta = -\frac{\sqrt{3}}{5}$, find $\sin \theta$ and $\cos \theta$.

b) Angle θ terminates in the fourth quadrant. If $\tan \theta = -\frac{\sqrt{3}}{5}$, find $\sin \theta$ and $\cos \theta$.

Multiple Choice 10. If $\cos A = -\frac{7}{25}$ and $180^{\circ} \le A \le 270^{\circ}$, then the values of $\sin A$ and $\tan A$ respectively are

A.
$$-\frac{24}{25}$$
 and $-\frac{24}{7}$

B.
$$-\frac{24}{25}$$
 and $\frac{24}{7}$

C.
$$-\frac{24}{25}$$
 and $\frac{7}{24}$

D.
$$\frac{24}{25}$$
 and $\frac{24}{7}$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Angle *P* has a terminal arm in the third quadrant. If $\tan P = \frac{1}{\sqrt{3}}$, the value 11. of $\sin P - \cos P$ is

A.
$$\frac{1-\sqrt{3}}{2}$$

B.
$$\frac{\sqrt{3}-1}{2}$$

C.
$$\frac{1+\sqrt{3}}{2}$$

D.
$$\frac{-1-\sqrt{3}}{2}$$

Answer Key

1.
$$\sin \theta = -\frac{3}{5}$$
 $\cos \theta = \frac{4}{5}$ $\tan \theta = -\frac{3}{2}$

1.
$$\sin \theta = -\frac{3}{5}$$
 $\cos \theta = \frac{4}{5}$ $\tan \theta = -\frac{3}{4}$ 2. $\sin \theta = -\frac{3\sqrt{10}}{10}$ $\cos \theta = -\frac{\sqrt{10}}{10}$ $\tan \theta = 3$

3.
$$\cos A = -\frac{16}{65}$$

4.
$$\sin \theta = -\frac{5}{13}$$
 $\tan \theta = -\frac{5}{12}$

5.
$$\tan \theta = \frac{4\sqrt{33}}{33}$$

3.
$$\cos A = -\frac{16}{65}$$
4. $\sin \theta = -\frac{5}{13}$ $\tan \theta = -\frac{5}{12}$
5. $\tan \theta = \frac{4\sqrt{33}}{33}$
6. $\sin A = \frac{15}{17}$ $\cos A = -\frac{8}{17}$
7. $\sin B = -\frac{4\sqrt{41}}{41}$
8. $\cos X = \frac{\sqrt{15}}{4}$

7.
$$\sin B = -\frac{4\sqrt{41}}{41}$$

8.
$$\cos X = \frac{\sqrt{15}}{4}$$

6.
$$\sin A = \frac{15}{17} \cos A = -\frac{8}{17}$$
 7. $\sin B = -\frac{4\sqrt{41}}{41}$ **8.** $\cos X = \frac{\sqrt{15}}{4}$

7.
$$\sin B = -\frac{4 \sqrt{41}}{41}$$

8.
$$\cos X = \frac{\sqrt{13}}{4}$$

9. a)
$$\sin \theta = \frac{\sqrt{21}}{14} \cos \theta = -\frac{5\sqrt{7}}{14}$$
 b) $\sin \theta = -\frac{\sqrt{21}}{14} \cos \theta = \frac{5\sqrt{7}}{14}$

b)
$$\sin \theta = -\frac{\sqrt{21}}{14}$$
 $\cos \theta = \frac{5\sqrt{7}}{14}$

10. B

11. B

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

186 Trigonometry - Angles and Ratios #3: Applications of Reference Angles and the CAST Rule

