Exponents and Radicals Lesson #7: Rational Exponents - Part Two

Review

Complete the following as a review.

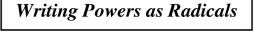
Product Law

$$x^m x^n =$$

Quotient Law $x^m \div x^n =$

$$(x^m)^n =$$

Power of a Power $(x^m)^n = \chi^m$ Power of a Product $(xy)^m = \chi^m \chi^m$


$$\left(\frac{x}{y}\right)^m = \int$$

Power of a Quotient $\left(\frac{x}{y}\right)^m = \int \begin{array}{c} \chi^m \\ \chi^m \\ \chi^m \\ \chi^m \\ \end{array}$ Integral Exponent Rule $x^{-m} = \begin{array}{c} \chi^m \\ \chi^m \\ \chi^m \\ \end{array}$ or $()^m$

$$x^{\frac{m}{n}} =$$

$$\sqrt{\chi_{\rm w}}$$

Write each power as a radical.

a)
$$x^{\frac{1}{6}}$$

b)
$$-v^{\frac{5}{4}}$$

b)
$$-y^{\frac{5}{4}}$$
 c) $(-z)^{\frac{5}{3}}$ d) $(-z)^{-\frac{5}{3}}$ e) $5t^{\frac{3}{4}}$ f) $(5t)^{\frac{3}{4}}$ $(5t)^{\frac{3}{4}}$ $(5t)^{\frac{3}{4}}$

$$\mathbf{f)} \quad (5t)$$

$$\left(\sqrt[3]{-Z}\right)^{2}$$

Simplify the following. Write each expression as a power with positive exponents and then as an entire radical.

b)
$$y^{\frac{1}{3}} \div y^{\frac{5}{3}}$$

c)
$$(a^{\frac{1}{2}})^{\frac{2}{3}}$$

$$\left(\frac{x^2}{y}\right)$$

$$\int_{a}^{b} \sqrt{x^{5}}$$

$$\sqrt{\frac{y}{X^2}}$$
 =

a)
$$x^{\frac{3}{2}} \times x$$
 $= \frac{3}{2}$ b) $y^{\frac{1}{3}} \div y^{\frac{5}{3}}$ c) $(a^{\frac{1}{2}})^{\frac{2}{3}}$ $= Q^{\frac{3}{4}} = Q^{\frac{1}{3}}$ $= Q^{\frac{3}{4}} = Q^{\frac{1}{3}}$ $= Q^{\frac{1}{2}} = Q^{\frac{1}{3}}$ $= Q^{\frac{1}{3}} = Q^{\frac{1}{3}} = Q^{\frac{1}{3}}$ $= Q^{\frac{1}{3}} = Q^{\frac{1}{3}} = Q^{\frac{1}{3}} = Q^{\frac{1}{3}}$ $= Q^{\frac{1}{3}} = Q$

Class Ex. #3

Simplify the following. Write each expression as a power with positive exponents and then as an entire radical.

as an entire radical.
a)
$$4x^{\frac{3}{4}} \times 3x^{-\frac{1}{2}}$$

$$= | 2 | x^{\frac{3}{4}} - \frac{2}{4} |$$

$$= | 2 | x^{\frac{1}{4}} = | 2 | 4 | 4 |$$

b)
$$\frac{5x^{\frac{5}{5}}}{25x^{-\frac{3}{5}}}$$

= $\frac{1}{5}\chi^{\frac{3}{5}-(-\frac{3}{5})}$
= $\frac{1}{5}\chi^{\frac{6}{5}} = \frac{1}{5}\sqrt[5]{\chi^{6}}$

$$= \frac{1}{5} x^{\frac{1}{3}} = 13 \sqrt[4]{x}$$

$$\int = |6|^3 \sqrt{a^2}$$

Complete Assignment Questions #1 - #3

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

44 Exponents and Radicals Lesson #7: Rational Exponents Part Two

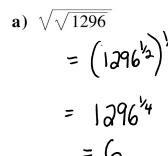
Writing Radicals as Powers

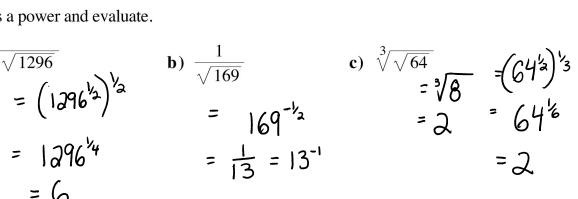
We can use the rule $a^{\frac{m}{n}} = (\sqrt[n]{a})^m = \sqrt[n]{a^m}$ to write radicals as powers.

Rodical -> exponent form

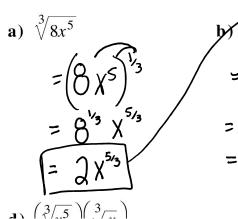
Write each radical as a power in the form a^n , $n \in Q$.

 $= \int_{3}^{2}$ $= \int_{3}^{2}$


c)
$$\sqrt{a^9}$$


Write as a power and evaluate.

b)
$$\frac{1}{\sqrt{169}}$$


$$= |69^{-1/2}]$$

$$= \frac{1}{13} = 13^{-1}$$

Write each expression in the form ax^n , where $a \in I$, and $n \in Q$.

c)
$$\sqrt{900x}$$

= $(900x)^{1/2}$
= $900^{1/2}x^{1/2}$
= $30x^{1/2}$

$$\frac{1}{d} \left(\sqrt[3]{x^5} \right) \left(\sqrt[3]{x} \right)$$

$$= \left(\sqrt[5]{3} \right) \left(\sqrt[1]{3} \right)$$

$$= \left(\sqrt[5]{3} \right) \left(\sqrt[1]{3} \right)$$

$$= \sqrt[5]{3} + \sqrt[1]{3}$$

$$= \sqrt[5]{3} + \sqrt[3]{3}$$

e)
$$2\sqrt{x} \times \sqrt[3]{x}$$

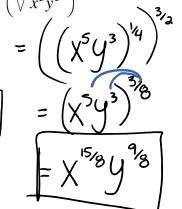
$$= 2\sqrt{x^3/6} \cdot \chi^{1/3}$$

$$= 2\sqrt{x^3/6} \cdot \chi^{3/6}$$

$$= 2\sqrt{x^3/6} \cdot \chi^{3/6}$$

$$= 2\sqrt{x^3/6} \cdot \chi^{3/6}$$

$$= 2\sqrt{x^3/6} \cdot \chi^{3/6}$$


Copyright © by Absolute Value Publications. This book is **NOT** covered by the Cancopy agreement.

Exponents and Radicals Lesson #7: Rational Exponents Part Two

Write an equivalent expression using exponents.

- b) $\sqrt[3]{64v^6}$ $= ((64v^6)^{v_3})^{v_3}$ $= (64v^6)^{v_6}$ $= (44v^6)^{v_6}$ $= (44v^6)^{v_6}$

Complete Assignment Questions #4 - #15

Assignment

- 1. Write each power as an entire radical.

- **a)** $a^{\frac{4}{5}}$ **b)** $b^{\frac{3}{2}}$ **c)** $c^{\frac{1}{4}}$ **d)** $x^{-\frac{2}{5}}$ **e)** $y^{-\frac{1}{3}}$

- **f**) $5h^{\frac{2}{3}}$ **g**) $(5h)^{\frac{2}{3}}$ **h**) $-r^{\frac{5}{4}}$ **i**) $(-r)^{\frac{5}{4}}$ **j**) $2x^{-\frac{1}{2}}$
- 2. Simplify the following. Write each expression as a power with positive exponents and then as an entire radical.

 - **a)** $x^{\frac{7}{2}} \times x$ **b)** $y^{\frac{6}{5}} \div y^{\frac{4}{5}}$ **c)** $(a^{\frac{2}{5}})^{\frac{3}{4}}$ **d)** $(e^3 f)^{\frac{3}{2}}$

$$\mathbf{a)} \ \ x^{\frac{7}{2}} \times x$$

a)
$$x^{\frac{7}{2}} \times x$$
 b) $y^{\frac{6}{5}} \div y^{\frac{4}{5}}$ **c)** $(a^{\frac{2}{5}})^{\frac{3}{4}}$ **d)** $(e^3 f)^{\frac{3}{2}}$

c)
$$(a^{\frac{2}{5}})^{\frac{3}{2}}$$

d)
$$(e^3f)^{\frac{3}{2}}$$

e)
$$x^{\frac{1}{2}} \times x^{-1}$$

f)
$$y^{\frac{2}{7}} \div y^{\frac{5}{7}}$$

$$\mathbf{g}) \left(\frac{x}{y^4}\right)^{\frac{1}{2}}$$

e)
$$x^{\frac{1}{2}} \times x^{-1}$$
 f) $y^{\frac{2}{7}} \div y^{\frac{5}{7}}$ **g)** $\left(\frac{x}{y^4}\right)^{\frac{1}{2}}$ **h)** $\left(\frac{x^2}{y}\right)^{-\frac{3}{2}}$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

- 46 Exponents and Radicals Lesson #7: Rational Exponents Part Two
- 3. Simplify the following. Write each expression as a power with positive exponents and then as an entire radical.

a)
$$2x^{\frac{3}{8}} \times 5x^{-\frac{1}{8}}$$
 b) $64(a^{\frac{1}{2}})^{\frac{1}{3}}$ **c)** $((64a)^{\frac{1}{3}})^{\frac{1}{2}}$ **d)** $(64a^{\frac{1}{3}})^{\frac{1}{2}}$

b)
$$64(a^{\frac{1}{2}})^{\frac{1}{3}}$$

c)
$$((64a)^{\frac{1}{3}})^{\frac{1}{2}}$$

d)
$$(64a^{\frac{1}{3}})^{\frac{1}{2}}$$

e)
$$\frac{y^{\frac{2}{3}}y^{\frac{1}{2}}}{v^{\frac{1}{4}}}$$

$$\mathbf{f)} \ \frac{a^3b^{\frac{1}{2}}}{b^3(a^{\frac{3}{2}})^2}$$

$$\mathbf{g}) \ \frac{10x^{-\frac{3}{5}}}{5x^{\frac{1}{5}}}$$

e)
$$\frac{y^{\frac{2}{3}}y^{\frac{1}{2}}}{y^{\frac{1}{4}}}$$
 f) $\frac{a^3b^{\frac{1}{2}}}{b^3(a^{\frac{3}{2}})^2}$ **g**) $\frac{10x^{-\frac{3}{5}}}{5x^{\frac{1}{5}}}$ **h**) $\frac{(a^4)^{\frac{1}{3}}}{9} \div \frac{a}{81^{\frac{3}{4}}}$

- **4.** Write each radical as a power in the form a^n , $n \in Q$.

- **a)** $\sqrt[5]{a^3}$ **b)** $\sqrt[5]{a^4}$ **c)** $\sqrt{a^5}$ **d)** $\frac{1}{\sqrt[4]{a}}$ **e)** $\frac{1}{\sqrt[4]{a^5}}$

- **5.** Write as a power and evaluate.
 - **a**) $\sqrt[3]{64}$

b) $\frac{1}{\sqrt[4]{625}}$

c) $\sqrt{\sqrt{2401}}$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Exponents and Radicals Lesson #7: Rational Exponents Part Two

- **6.** Write each expression in the form ax^n , where $a \in I$, and $n \in Q$.
 - **a)** $\sqrt[3]{27x^7}$

- **b**) $\sqrt[4]{81x^3}$
- **c**) $\sqrt[3]{-64x}$

$$\mathbf{d}) \left(\sqrt[4]{x^3} \right) \left(\sqrt{x} \right)$$

$$e) \quad 3\sqrt[3]{x} \times 3\sqrt[3]{x}$$

$$\mathbf{f)} \ \left(\frac{25\sqrt[3]{x^5}}{5x^{\frac{1}{3}}} \right)^2$$

$$\mathbf{u} \in (\forall x) (\forall x)$$

e)
$$3 \vee x \times 3 \vee x$$

$$\begin{array}{c|c} & & \\ \hline & 5x^{\frac{1}{3}} \end{array}$$

7. Write an equivalent expression using positive exponents.

a)
$$\sqrt{\sqrt{x^5}}$$

b)
$$\sqrt[3]{\sqrt{a^8}}$$

c)
$$\sqrt[3]{\sqrt{729y^{12}}}$$

d)
$$\sqrt[3]{\sqrt[4]{x^{\frac{2}{3}}}}$$

e)
$$\left(\sqrt[4]{2y-3}\right)^{-3}$$

$$\mathbf{f)} \quad \left(\sqrt[4]{x^4y^3}\right)^{\frac{3}{2}}$$

g)
$$-\sqrt[3]{x^2}$$

h)
$$\sqrt[3]{(-x)^2}$$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

48 Exponents and Radicals Lesson #7: Rational Exponents Part Two

Matching Match each item in column 1 with the equivalent item in column 2. Each item in column 2 may be used once, more than once, or not at all.

Match each item in column 1 with the equivalent item in column 2. Each item in column 2 may be used once, more than once, or not at all.

Column 1

8.
$$\left(\frac{p}{q}\right)^{\frac{4}{3}}$$

9.
$$\left(\frac{p}{q}\right)^{\frac{3}{4}}$$

$$10. \quad \left(\frac{q}{p}\right)^{-\frac{4}{3}}$$

$$11. \quad \left(\frac{p}{q}\right)^{-\frac{3}{4}}$$

12.
$$\left(\frac{q}{p}\right)^{\frac{3}{4}}$$

13.
$$\left(\frac{p}{q}\right)^{-\frac{4}{3}}$$

Column 2

$$\mathbf{A.} \quad \sqrt[4]{\frac{q^3}{p^3}}$$

$$\mathbf{B.} \quad \sqrt[4]{\frac{p^3}{q^3}}$$

$$\mathbf{C.} \quad -\sqrt[4]{\frac{p^3}{q^3}}$$

$$\mathbf{D.} \quad \sqrt[3]{\frac{p^4}{q^4}}$$

$$\mathbf{E.} \quad \sqrt[3]{\frac{q^4}{p^4}}$$

$$\mathbf{F.} \quad -\sqrt[3]{\frac{q^4}{p^4}}$$

Multiple 14. Choice

14. Which expression is not equivalent to the others?

A.
$$a^{-\frac{4}{3}}$$

B.
$$\left(\frac{1}{a^4}\right)^3$$

C.
$$\left(\sqrt[3]{a}\right)^{-4}$$

D.
$$\frac{1}{\sqrt[3]{a^4}}$$

The value, to the nearest tenth, of the expression $\left(\sqrt[3]{x^{\frac{4}{5}} - y^{\frac{1}{2}} + \sqrt[3]{z}}\right)^2$ when x = 32, y = 36, and z = 125 is _____.

(Record your answer in the numerical response box from left to right)

Answer Key

Unless otherwise indicated in the question, radicals can be given in the form $\sqrt[n]{x^m}$ or $\left(\sqrt[n]{x}\right)^m$ and powers can be given in the form x^{-n} or $\frac{1}{x^n}$. Equivalent versions of some answers are possible.

1. a)
$$\sqrt[5]{a^4}$$

b)
$$\sqrt{b^3}$$

c)
$$\sqrt[4]{c}$$

1. a)
$$\sqrt[5]{a^4}$$
 b) $\sqrt{b^3}$ c) $\sqrt[4]{c}$ d) $\frac{1}{\sqrt[5]{x^2}}$ e) $\frac{1}{\sqrt[3]{y}}$ f) $5\sqrt[3]{h^2}$

e)
$$\frac{1}{\sqrt[3]{v}}$$

f)
$$5\sqrt[3]{h^2}$$

g)
$$\sqrt[3]{(5h)^2}$$

h)
$$-\sqrt[4]{r^5}$$

g)
$$\sqrt[3]{(5h)^2}$$
 h) $-\sqrt[4]{r^5}$ **i**) $\sqrt[4]{(-r)^5}$ **j**) $\frac{2}{\sqrt{r}}$

$$\mathbf{j})\frac{2}{\sqrt{x}}$$

b)
$$y^{\frac{2}{5}} =$$

c)
$$a^{\frac{3}{10}} = \sqrt[10]{a^3}$$

d)
$$e^{\frac{9}{2}f^{\frac{3}{2}}} = \sqrt{e^9f^3}$$

$$\mathbf{e)} \quad \frac{1}{x^{\frac{1}{2}}} = \frac{1}{\sqrt{x}}$$

$$\mathbf{f)} \quad \frac{1}{\sqrt[3]{7}} = \frac{1}{\sqrt[7]{y^3}}$$

2. a)
$$x^{\frac{9}{2}} = \sqrt{x^9}$$
 b) $y^{\frac{2}{5}} = \sqrt[5]{y^2}$ c) $a^{\frac{3}{10}} = \sqrt[10]{a^3}$ d) $e^{\frac{9}{2}f^{\frac{3}{2}}} = \sqrt{e^9f^3}$ e) $\frac{1}{x^{\frac{1}{2}}} = \frac{1}{\sqrt{x}}$ f) $\frac{1}{y^{\frac{3}{7}}} = \frac{1}{\sqrt[7]{y^3}}$ g) $\frac{x^{\frac{1}{2}}}{y^2} = \frac{\sqrt{x}}{y^2}$ h) $\frac{y^{\frac{3}{2}}}{x^3} = \frac{\sqrt{y^3}}{x^3}$

h)
$$\frac{y^{\frac{3}{2}}}{x^3} = \frac{\sqrt{y^3}}{x^3}$$

3. a)
$$10x^{\frac{1}{4}} = 10\sqrt[4]{x}$$
 b) $64a^{\frac{1}{6}} = 64\sqrt[6]{a}$ c) $2a^{\frac{1}{6}} = 2\sqrt[6]{a}$ d) $8a^{\frac{1}{6}} = 8\sqrt[6]{a}$

b)
$$64a^{\frac{1}{6}} = 64\sqrt[6]{a}$$

c)
$$2a^{\frac{1}{6}} = 2\sqrt[6]{a}$$

d)
$$8a^{\frac{1}{6}} = 8\sqrt[6]{a}$$

e)
$$y^{\frac{11}{12}} = \sqrt[12]{y^{11}}$$

$$\mathbf{f}) \quad \frac{1}{b^{\frac{5}{2}}} = \frac{1}{\sqrt{b^5}}$$

e)
$$y^{\frac{11}{12}} = \sqrt[3]{y^{\frac{11}{11}}}$$
 f) $\frac{1}{b^{\frac{5}{2}}} = \frac{1}{\sqrt{b^5}}$ **g**) $\frac{2}{x^{\frac{4}{5}}} = \frac{2}{\sqrt[5]{x^4}}$ **h**) $3a^{\frac{1}{3}} = 3\sqrt[3]{a}$

h)
$$3a^{\frac{1}{3}} = 3\sqrt[3]{a}$$

$$b^{\frac{3}{2}}$$
 $\sqrt{b^5}$ x^4

4. a) $a^{\frac{3}{5}}$ b) $a^{\frac{4}{5}}$ c) $a^{\frac{5}{2}}$ d) $a^{-\frac{1}{4}}$ e) $a^{-\frac{5}{4}}$

5. a) $64^{\frac{1}{6}} = 2$ b) $625^{-\frac{1}{4}} = \frac{1}{5}$ c) $2401^{\frac{1}{4}} = 7$

6. a) $3x^{\frac{7}{3}}$ **b)** $3x^{\frac{3}{4}}$ **c)** $-4x^{\frac{1}{3}}$ **d)** $x^{\frac{5}{4}}$ **e)** $9x^{\frac{2}{3}}$ **f)** $25x^{\frac{8}{3}}$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

50 Exponents and Radicals Lesson #7: Rational Exponents Part Two

a) x **b)** $a^{\frac{1}{3}}$ **c)** $3y^{\frac{2}{3}}$ **d)** $x^{\frac{1}{18}}$ **e)** $\frac{1}{(2y-3)^{\frac{3}{4}}}$ **f)** $x^{\frac{3}{2}}y^{\frac{9}{8}}$ **g)** $-x^{\frac{2}{3}}$ **h)** $(-x)^{\frac{2}{3}}$

8. D

9. B

10.D


11.A

12.A

13.E

14.B

15. 6

