Exponents and Radicals Lesson \#5: Applications of Radicals

Application - Ordering a Set of Irrational Numbers

Without using a calculator, arrange the following mixed radicals in order from greatest to least.
rounded ounces perfect square rounded up
i) $3 \sqrt{5}$ $\begin{array}{ll}\text { (i) } 5 \sqrt{3} & \text { iii) } \sqrt{15}\end{array}$
iv) $2 \sqrt{8}$
v) $8 \sqrt{2}$
$3 \sqrt{4}$ $5 \sqrt{4}$
$\sqrt{16}$
$2 \sqrt{9}$
$2(3)$
(aver
(6)
Complete Assignment Questions \#1-\#3

Application - Pythagorean Theorem

Consider line segment $A B$ shown on the grid.
Determine the exact length of the line segment in simplest mixed radical form, using
a) the Pythagorean Theorem $\underset{c^{2}}{\text { right angled } \Delta^{2}}$'s
 $b: y$-value top \rightarrow bottom
b) the Distance Formula $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

$$
\left.\begin{array}{rl}
\left(x_{1}, y_{1}\right) \rightarrow(-6,-2) \\
\left(x_{2}, y_{2}\right) \rightarrow(3,1) & d
\end{array}=\sqrt{(3-(-6))^{2}+(1-(-2))^{2}}\right)
$$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

30 Exponents and Radicals Lesson \#5: Applications of Radicals

Use the Pythagorean Theorem to determine the exact length of $A B$. Express the answer as
a) an exact value in simplest mixed radical form
b) as a decimal to the nearest hundredth

$$
\begin{gathered}
\text { * solve for } y \rightarrow \begin{array}{l}
\text { long side and short side } \\
\text { given, use } c^{2}-b^{2}=a^{2}
\end{array} \\
\begin{array}{c}
12^{2}-8^{2}=y^{2} \\
144-64=y^{2} \\
80=y^{2}
\end{array} \quad \begin{array}{l}
\text { solve for } x \\
\text { using two short } \\
\text { sides } \\
x^{2}=6^{2}+\sqrt{80}
\end{array} \begin{array}{c}
\sqrt{116}
\end{array} \begin{array}{c}
\text { want } \\
288 \\
\text { mixed } \\
\text { simple } \\
\text { radical }
\end{array} \\
\text { (a) } 2 \sqrt{29}
\end{gathered}
$$

$$
\text { в } \begin{aligned}
& 6 \mathrm{D} 8
\end{aligned}
$$

Complete Assignment Questions \#4-\#7

Other Applications

b) 10.77

Given that $\sqrt{5}$ is approximately equal to 2.24 , and $\sqrt{50}$ is approximately equal to 7.07 , then find the approximate value of
a) $\sqrt{500}$
b) $\sqrt{5000}$
c) $\sqrt{20}$
d) $\sqrt{0.05}$
e) $\sqrt{0.5}$

Complete Assignment Questions \#8 - \#12

Assignment

1. Without using a calculator, arrange the following radicals in order from greatest to least.

$$
3 \sqrt{7}, 5 \sqrt{3}, \sqrt{60}, 2 \sqrt{11}, \frac{1}{2} \sqrt{200}
$$

2. Without using a calculator, arrange the following radicals in order from least to greatest.
$7 \sqrt[6]{1},-3 \sqrt[3]{-27}, \frac{5}{2} \sqrt[4]{16}, 3 \sqrt{\sqrt[3]{64}}$
3. Consider the following radicals: $2 \sqrt[3]{11}, 3 \sqrt[3]{3}, 4 \sqrt[3]{2}, 2 \sqrt[3]{6}$.
a) Explain how to arrange the radicals in order from least to greatest without using a calculator.
b) Arrange the radicals in order from least to greatest.
4. Consider $\triangle P Q R$ as shown. Students are trying to determine the length of $P Q$ using the Pythagorean Formula.

Louis expresses each side to the nearest hundredth and calculates the length of $P Q$ to the nearest hundredth.

Asia uses the entire radical form for each side and expresses her answer to the nearest hundredth.
a) Complete each student's work.

Louis's Work

$$
\begin{aligned}
(P Q)^{2} & =(Q R)^{2}+(P R)^{2} \\
& =5.83^{2}+ \\
& =
\end{aligned}
$$

Asia's Work

$$
\begin{aligned}
(P Q)^{2} & =(Q R)^{2}+(P R)^{2} \\
& =(\sqrt{34})^{2}+
\end{aligned}
$$

b) Which student's answer is more accurate? Explain.
c) State the exact answer as a mixed radical.

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

32 Exponents and Radicals Lesson \#5: Applications of Radicals
5. Use the Pythagorean formula, $c^{2}=a^{2}+b^{2}$, in the given triangle to calculate the length of $X Y$. Express the answer as
i) an entire radical
ii) a mixed radical

iii) a decimal to the nearest hundredth
6. Find the lengths of the missing sides.

Express the answers in simplest mixed radical form.
a)

b)

c)

7. Determine the exact distance between the following pairs of points.

Answer as a mixed radical in simplest form.
a) $(-3,8)$ and $(-1,4)$
b) $(3,2)$ and $(-3,-4)$
c) $(15,8)$ and $(9,20)$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.
8. Given that $\sqrt{6}$ is approximately equal to 2.45 , and $\sqrt{60}$ is approximately equal to 7.75 , then, without using a calculator, find the approximate value of
a) $\sqrt{600}$
b) $\sqrt{6000}$
c) $\sqrt{600000}$
d) $\sqrt{0.06}$
9. The length of $K L$ can be represented by which of the following?
A. $\sqrt{540}$
B. $3 \sqrt{2}$
C. $\sqrt{30}$

D. $9 \sqrt{2}$

Numerical 10. The volume of an ice cube is $32000 \mathrm{~mm}^{3}$. The exact length of each edge of the ice cube
Response can be written in simplest mixed radical form as $p \sqrt[3]{q}$ where p and q are whole numbers.

The value of $p-q$ is \qquad -.
(Record your answer in the numerical response box from left to right.)

11. The smaller square has side length 8 cm . The side length of the larger square can be written in simplest form as $p \sqrt{q}$, where $p, q \in N$. The value of $p q$ is \qquad —.

(Record your answer in the numerical response box from left to right)

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

34 Exponents and Radicals Lesson \#5: Applications of Radicals
Use the following information to answer question \#12.
In Ancient Greece, a formula was developed which could be used to calculate the area of a triangle. The formula, known as Heron's Formula, is shown below.

$$
A=\sqrt{s(s-a)(s-b)(s-c)}
$$

where a, b, and c are the lengths of the sides of a triangle,
and $s=\frac{a+b+c}{2}$
12. The area of a triangle whose sides measure 14,15 , and 25 can be written in simplest form as $p \sqrt{26}$, where $a \in N$. The value of p is \qquad .
(Record your answer in the numerical response box from left to right)

Answer Key

1. $5 \sqrt{3}, 3 \sqrt{7}, \sqrt{60}, \frac{1}{2} \sqrt{200}, 2 \sqrt{11} \quad 2 \cdot \frac{5}{2} \sqrt[4]{16}, 3 \sqrt{\sqrt[3]{64}}, 7 \sqrt[6]{1},-3 \sqrt[3]{-27}$
2. a) Convert the mixed radicals to entire form and compare the radicands. b) $2 \sqrt[3]{6}, 3 \sqrt[3]{3}, 2 \sqrt[3]{11}, 4 \sqrt[3]{2}$
3. a) Louis 8.48 , Asia 8.49
b) Asia because she used exact values rather than rounded values in her calculation.
c) $6 \sqrt{2}$
4. a) Louis 8.48, Asia 8.49
b) Asia because she used exact values rather than rounded values in her calculation.
c) $6 \sqrt{2}$
5. i) $\sqrt{336} \mathrm{~cm}$ ii) $4 \sqrt{21} \mathrm{~cm}$ iii) 18.33 cm
6. a) $4 \sqrt{5}$
b) $\sqrt{61}$
c) $2 \sqrt{11}$
7. a) $2 \sqrt{5}$
b) $6 \sqrt{2}$
c) $6 \sqrt{5}$
8. a) 24.5
b) 77.5
c) 775
d) 0.245
9. в
10. \qquad 11.

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Exponents and Radicals Lesson \#6: Rational Exponents - Part One

Review of the Exponent Laws

The exponent laws with integral exponents and numerical and variable bases were covered in previous math courses.

Complete the table as a review of the exponent laws.

Numerical Bases	Variable Bases	Exponent Laws
$\begin{aligned} 8^{3} \times 8^{2} & =(8 \cdot 8 \cdot 8)(8 \cdot 8) \sim \\ & =8^{5} \quad \text { of } 8^{3+2} \end{aligned}$	$\begin{aligned} a^{3} \times \underline{a}^{2} & \equiv(a \cdot a \cdot a)(a \cdot a) \\ & =a \quad \text { or }{ }^{5} a^{+}{ }^{3} \end{aligned}$	Product Law $\left(a^{m}\right)\left(a^{n}\right)=a^{m+n}$
$\begin{aligned} 8^{3} \div 8^{2} & =\frac{8 \cdot 8 \cdot \gamma^{8}}{8 \cdot 8} \text { (or } 8^{-32} \end{aligned}$	$\begin{aligned} a^{3} \div a^{2} & =\frac{a \cdot a \cdot a}{a \cdot a} \backslash \\ & =a \text { or }{ }^{\prime} a-32 \end{aligned}$	Quotient Law $\begin{aligned} a^{m} \div a^{n}= & \frac{a^{m}}{a^{n}}=\quad a^{m} \\ & (a \neq 0) \end{aligned}$
$\begin{align*} (8 \cdot 7)^{3} & =(8 \cdot 7)(8 \cdot 7)(8 \cdot 7) \\ & =(8 \cdot 8 \cdot 8)(\quad 7 刃 \cdot \\ & =8^{3} \cdot 7^{3} \end{align*}$	$\begin{aligned} (a \cdot b)^{3} & =(a \cdot b)(a \cdot b)(a \cdot b) \\ & =(a \cdot a \cdot a)(\quad \text { b) } \\ & =a b{ }^{33} \end{aligned}$	Power of a Product Law $b \cdot b=\curvearrowright a^{m} b^{m}$
$\begin{aligned} \left(\frac{8}{7}\right)^{3} & =(-)\left(\frac{8}{7}\right)\left(\frac{8}{7}\right) \S \\ & =\frac{8^{3}}{7^{3}} 0 \end{aligned}$	$\begin{aligned} \left(\frac{a}{b}\right)^{3} & =(-)\left(\frac{a}{b}\right)\left(\frac{a}{b}\right) \\ & =\frac{a}{b} \quad 3 \end{aligned}$	${ }^{\text {Power of a Quotient Law }}$ $\begin{array}{r} \left(\frac{a}{b}\right)^{n}=>\frac{a^{n}}{b^{n}} \\ (b \neq 0) \end{array}$
$\left.\begin{array}{rl} \left(8^{3}\right)^{2} & =\left(8^{3}\right)\left(8^{3}\right) \\ & =(\quad 8 \cdot 9 \cdot 8 \\ & =8^{6} \text { or } 8 \times 3 \cdot 8 \end{array}\right)$		Power of a Power Law $a\left(a^{m}\right)^{n}=a^{m n}$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Investigating the Meaning of $a^{\frac{1}{n}}$

a) Complete and evaluate the following.
i) $\sqrt{5} \cdot \sqrt{5}=\sqrt{ }$ क 5
ii) $5^{\frac{1}{2}} \cdot 5^{\frac{1}{2}}=5^{\square+\square^{\frac{1}{2}}}=5^{\frac{1}{2}} \square=1 \quad 5$

Deduce a meaning for $5^{\frac{1}{2}}$ in radical form. $x^{n} \cdot x^{m}=x^{n+m}$
$=\sqrt{5}$
b) Complete and evaluate the following.
i) $\sqrt[3]{2} \cdot \sqrt[3]{2} \cdot \sqrt[3]{2}=\sqrt[3]{ }=8$
$2 i i$
$2^{\frac{1}{3}} \cdot 2^{\frac{1}{3}} \cdot 2^{\frac{1}{3}}=2^{\square+\square \frac{1}{3} \square \frac{1}{3}}=2^{\frac{1}{3} \square}=2$

Deduce a meaning for $2^{\frac{1}{3}} . \quad=\sqrt[3]{2}$
c) Write the following in radical form and evaluate manually. Verify with a calculator.
i) $25^{\frac{1}{2}}=\bigcirc \quad \sqrt{25}=5$ (1) $64^{\frac{1}{3}}=$
$\sqrt[3]{64}=$ ii) $81^{\frac{1}{4}}=$
$\sqrt[4]{81}=3$

25 亿 $(1 \div 2) \quad 25 x^{4}(1 \div 2)$
d) Write the following in radical form.
i) $x^{\frac{1}{2}}=$
$\sqrt{X^{\text {ii) }}} b^{\frac{1}{3}}=$
$\sqrt[3]{b^{\text {iii }}} p^{\frac{1}{10}}=$

$$
\sqrt[10]{\dot{p}^{\mathbf{y}}} a^{\frac{1}{n}}=\sqrt[n]{a}
$$

Investigating the Meaning of $a^{\frac{m}{n}}$

1. a) Complete and evaluate the following.
i) $\sqrt{5^{3}} \cdot \sqrt{5^{3}}=\sqrt{5^{3}} \quad 125$
ii) $5^{\frac{3}{2}} \cdot 5^{\frac{3}{2}}=5^{\square+\sqrt{3}} \frac{3}{2}=5^{\frac{3}{2}}=\frac{6}{2} \quad 5^{3}=125$
Deduce a meaning for 5 in radical form. $\sqrt{5^{3}}$
b) Complete and evaluate the following.
i) $\sqrt[3]{2^{2}} \cdot \sqrt[3]{2^{2}} \cdot \sqrt[3]{2^{2}}=$
$=$
ii) $2^{\frac{2}{3}} \cdot 2^{\frac{2}{3}} \cdot 2^{\frac{2}{3}}=2^{\square+\square+\square}=2^{\square}$

Deduce a meaning for $2^{\frac{2}{3}}$.
c) Write the following in radical form.
i) $x^{\frac{5}{3}}=8 \underset{\sqrt[8]{k} \text { index }}{\sqrt[3]{x^{(5)}}}$
ii) $b^{\frac{4}{5}}=$
iii) $p^{\frac{5}{2}}=\quad$ iv) $a^{\frac{m}{n}}=$
$\sqrt[5]{b^{4}}$ $\sqrt[2]{p^{5}}=\sqrt{p^{5}} \quad \sqrt[n]{a^{m}}$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.
2. a) Evaluate
i) $8^{\frac{2}{3}}=\left(8^{\frac{1}{3}}\right)^{2}=(\sqrt[3]{8})^{2}=$
2^{2} fit $48^{\frac{2}{3}}=\left(8^{2}\right)^{\frac{1}{3}}=\sqrt[3]{\left(8^{2}\right)}=\sqrt[3]{64}=4$
2. a) Evaluate
2^{2} niH $48^{\frac{2}{3}}=\left(8^{2}\right)^{\frac{1}{3}}=\sqrt[3]{\left(8^{2}\right)}=$
$\sqrt[3]{64}=4$
i) $\begin{array}{r}8^{\frac{2}{3}}=\left(8^{\frac{1}{3}}\right)^{2}=(\sqrt[3]{8})^{2}= \\ \frac{\bar{\iota}}{2}\end{array}$
b) Which of the calculations above is the easier method for evaluating $8^{\frac{2}{3}}$?
c) Write the following in radical form and evaluate manually. Verify with a calculator.
i) $64^{\frac{3}{2}}=$
ii) $4^{\frac{5}{2}}$
iii) $81^{\frac{3}{4}}$
3. a) Use exponent laws to simplify $8^{\frac{2}{3}} \times 8^{-\frac{2}{3}}$.
b) Use the result in a) to write $8^{-\frac{2}{3}}$ in a form with a positive exponent.

Evaluate $8^{-\frac{2}{3}}$ without using a calculator.

Rational Exponents

$$
a^{\frac{m}{n}}=(\sqrt[n]{a})^{m} \quad \text { or } \quad a^{\frac{m}{n}}=\sqrt[V]{ } a^{m}, m \in I, n \in N, a \neq 0 \text { when } m \text { is } 0 .
$$

Note that if n is even, then a must be non-negative.

$$
a^{-\frac{m}{n}}=\frac{1}{(\sqrt[n]{a})^{m}} \quad \text { or } \quad a^{-\frac{m}{n}}=\frac{n}{a^{m}}, m \in I, n \in N, a \neq 0 \text { when } m \text { is } 0 .
$$

Note that if n is even, then a must be positive.

Write the following in radical form and evaluate without using a calculator.
Verify with a calculator.
a) $25^{\frac{3}{2}}$
$=\sqrt{25^{3}}$
25 国 $\left(3^{2}=200^{\frac{4}{3}}\right.$
$\begin{aligned} &(\sqrt[3]{1000})^{4}=\left(\frac{1}{\sqrt[3]{27}}\right)^{2} \\ &=\sqrt{2}=\Delta^{3}=10^{4}=\left(\frac{1}{3}\right)^{2}=\frac{1}{9} \\ &= 10000\end{aligned}$
d) $16^{-\frac{3}{4}}$ $=\left(\frac{1}{\sqrt[4]{16}}\right)^{3}$
$=\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
e) $(-8)^{\frac{2}{3}}$
$=(\sqrt[3]{-8})^{2}$
$(-2)^{2}=4$
f) $-8^{\frac{2}{3}}$
$=-(\sqrt[3]{8})^{2}$
g) $\left(3^{2}+4^{2}\right)^{\frac{1}{2}}$
$\begin{aligned}= & -(2)^{2} \\ = & -4\end{aligned}$
$=(9+16)^{1 / 2}$
$=25^{\frac{1}{2}}=\sqrt{25}=5$
Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

38
Exponents and Radicals Lesson \#6: Rational Exponents Part One
Write the following in radical form and evaluate without using a calculator.
Verify with a calculator.
a) $\left(\frac{9}{4}\right)^{\frac{3}{2}}$
$=\left(\sqrt{\frac{9}{4}}\right)^{3}$
b) $\left(\frac{9}{4}\right)^{-\frac{3}{2}}$
$=\left(\frac{4}{9}\right)^{3 / 2}=\left(\sqrt{\frac{4}{9}}\right)^{3}$
$=\left(\frac{\sqrt{9}}{\sqrt{4}}\right)^{3}=\left(\frac{3}{2}\right)^{3}=\frac{3^{3}}{2^{3}}=\frac{27}{8}$
$=\left(\frac{2}{3}\right)^{3}=\frac{8}{27}$

$$
=\left(\frac{v 7}{\sqrt{4}}\right)=(\bar{\alpha})-\overline{2^{3}}-1 \quad=\left(\frac{\alpha}{3}\right)=\frac{0}{\partial 7}
$$

Complete Assignment Questions \#1- \#5

Consider the following powers.
A. $64^{\frac{2}{3}}$
B. (-64) $(\sqrt[3]{64})^{2}=$

A.
thy three of the above powers can be calculated but the other has no meaning.
Explain why three of the above powers can be calculated but the other has no meaning.

Write an equivalent expression using radicals.
b) $s^{\frac{4}{7}}=$
exponent $t^{-\frac{1}{6}}$
a) $r^{\frac{1}{3}}=T_{\text {in }} d e x$

d) $v^{-\frac{3}{2}}=$

D) You cant have a negative base with $\checkmark l=\mathrm{w}=\mathrm{k}$ even root
A cube hasa a volume of ton? $l \mathrm{wh} \quad l^{3}=60$
a) Write a power which represents the edge length of the cube.
$\sqrt[3]{60}=60^{\frac{1}{3}}$
b) Wye a power which represents the surface area of the cube.
c) Use a calculator to calculate the edge length and surface area to the nearest tenth.

$$
\sqrt[3]{60}=60^{1 / 3}=3.9
$$

Write the number 10 in the following forms:
a) as a power with an exponent of $\frac{1}{2}$
b) as a power with an exponent of $\frac{1}{3}$

$$
(100)^{2}=10=\sqrt{100}
$$

$(1000)^{1 / 3}=10=\sqrt[3]{1000}$
 6acegik, 1Oace

Complete Assignment Questions \#6 - \#13
Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Assignment

1. Evaluate without the use of a calculator.
a) $4^{\frac{1}{2}}$
b) $100^{\frac{1}{2}}$
c) $64^{\frac{1}{3}}$
d) $9^{\frac{3}{2}}$
e) $49^{\frac{3}{2}}$
f) $16^{\frac{3}{4}}$
g) $8^{\frac{2}{3}}$
h) $125^{\frac{1}{3}}$
i) $\left(6^{2}+8^{2}\right)^{\frac{3}{2}}$
j) $(0.04)^{0.5}$
2. Determine the exact value without using a calculator.
a) $9^{-\frac{1}{2}}$
b) $4^{-\frac{7}{2}}$
c) $25^{-\frac{3}{2}}$
d) $1000^{-\frac{2}{3}}$
e) $64^{-\frac{5}{6}}$
f) $8^{-\frac{4}{3}}$
g) $49^{-\frac{1}{2}}$
h) $32^{-\frac{2}{5}}$
i) $\left(5^{2}-3^{2}\right)^{-\frac{5}{4}}$
j) $(0.09)^{-\frac{3}{2}}$
3. Determine the exact value without using a calculator.
a) $\left(\frac{1}{25}\right)^{\frac{1}{2}}$
b) $\left(\frac{1}{4}\right)^{-\frac{1}{2}}$
c) $\left(\frac{1}{8}\right)^{\frac{4}{3}}$
d) $\left(\frac{9}{4}\right)^{-\frac{3}{2}}$
e) $\left(\frac{16}{81}\right)^{-\frac{3}{4}}$

40 Exponents and Radicals Lesson \#6: Rational Exponents Part One
4. Determine the exact value without using a calculator.
a) $(-8)^{\frac{1}{3}}$
b) $(-27)^{\frac{2}{3}}$
c) $-25^{-\frac{1}{2}}$
d) $-(-32)^{-\frac{4}{5}}$
e) $(-0.008)^{\frac{2}{3}}$
5. Use a calculator to evaluate the following to the nearest hundredth.
a) $4^{\frac{2}{3}}$
b) $7^{\frac{3}{4}}$
c) $(-5)^{\frac{6}{5}}$
d) $6^{-\frac{1}{4}}$
e) $-(-0.8)^{\frac{2}{3}}$
6. Write an equivalent expression using radicals.
a) $a^{\frac{1}{4}}=$
b) $b^{\frac{1}{2}}=$
c) $c^{\frac{1}{5}}=$
d) $d^{-\frac{1}{2}}=$
6. Write an equivalent expression using radicals.
a) $a^{\frac{1}{4}}=$
b) $b^{\frac{1}{2}}=$
c) $c^{\frac{1}{5}}=$
d) $d^{-\frac{1}{2}}=$
е) $e^{-\frac{1}{10}}=$
f) $f^{\frac{2}{3}}=$
g) $g^{\frac{4}{3}}=$
h) $h^{\frac{5}{2}}=$
i) $i^{-\frac{3}{2}}=$
j) $j^{-\frac{4}{5}}=$
k) $k^{-\frac{3}{4}}=$

1) $l^{\frac{m}{n}}=$
7. Assuming that x represents a positive integer, state which of the following expressions has no meaning.
a) $(-x)^{\frac{7}{3}}$
b) $(-x)^{\frac{3}{2}}$
c) $-(-x)^{\frac{1}{9}}$
d) $-(-x)^{\frac{5}{6}}$
8. A cube has a volume of $216 \mathrm{~cm}^{3}$.
a) Write a power which represents the edge length of the cube.
b) Write a power which represents the surface area of the cube.
c) Calculate the exact edge length and surface area of the cube.

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.
9. A cube has a volume of $V \mathrm{~cm}^{3}$.
a) Write a power and a radical which represents the edge length of the cube.
b) Write a power and a radical for the area of one of the faces of the cube.
10. In each case write the given number as a power with the given exponent.
a) 5 as a power with an exponent of $\frac{1}{2}$
b) 8 as a power with an exponent of $\frac{1}{3}$
c) -3 as a power with an exponent of $\frac{1}{3}$
d) $\frac{1}{4}$ as a power with an exponent of $-\frac{1}{2}$
e) 6 as a power with an exponent of $-\frac{1}{2}$
f) 100 as a power with an exponent of $\frac{2}{3}$
e) 6 as a power with an exponent of $-\frac{\dot{\partial}}{2}$
f) 100 as a power with an exponent of $\frac{-}{3}$

Multiple
Choice
11. $\left(\frac{9}{16}\right)^{-0.5}$ is equal to
A. $\frac{256}{81}$
12. $\left(-\frac{1}{4}\right)^{-1.5}$ is equal to
B. $\frac{4}{3}$
A. -8
C. $-\frac{4}{3}$
B. 8
D. $\frac{81}{256}$
C. 6
D. has no meaning

Numerical 13. Evaluate the following and arrange the answers from greatest to least.

Response

Calculation 1. $-(27)^{-\frac{2}{3}}$
Calculation 2. $\left(\frac{1}{27}\right)^{\frac{1}{3}}$

Calculation 3. $(-27)^{\frac{2}{3}}$
Calculation 4. $\left(-\frac{1}{27}\right)^{-\frac{1}{3}}$

Place the calculation \# with the greatest answer in the first box.
Place the calculation \# with the second greatest answer in the second box.
Place the calculation \# with the third greatest answer in the third box.
Place the calculation \# with the smallest answer in the fourth box.
(Record your answer in the numerical response box from left to right) \square
Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

42 Exponents and Radicals Lesson \#6: Rational Exponents Part One

Answer Key

1.a) 2
b) $10 \quad$ c) 4
d) 27
e) 343
f) 8
g) 4
h) 5
i) $1000 \quad \mathbf{j})$
j) 0.2
2.a) $\frac{1}{3}$
b) $\frac{1}{128}$ c) $\frac{1}{125}$
d) $\frac{1}{100}$
e) $\frac{1}{32}$
f) $\frac{1}{16}$
g) $\frac{1}{7}$
h) $\frac{1}{4}$
i) $\frac{1}{32}$
j) $\frac{1000}{27}$
3.a) $\frac{1}{5}$
b) 2 c) $\frac{1}{16}$
d) $\frac{8}{27}$
e) $\frac{27}{8}$
4.a) -2 b) 9
c) $-\frac{1}{5}$
d) $-\frac{1}{16}$
e) 0.04
5.a) 2.52 b) 4.30 c) 6.90
d) 0.64
e) -0.86
6.a) $\sqrt[4]{a}$
b) \sqrt{b}
c) $\sqrt[5]{c}$
d) $\frac{1}{\sqrt{d}}$
е) $\frac{1}{\sqrt[1 V_{e}]{ }}$
f) $(\sqrt[3]{f})^{2}$
g) $(\sqrt[3]{g})^{4}$
h) $(\sqrt{h})^{5}$
i) $\frac{1}{(\sqrt{i})^{3}}$
j) $\frac{1}{(\sqrt[5]{j})^{4}}$
k) $\frac{1}{(\sqrt[4]{k})^{3}}$

1) $(\sqrt[n]{l})^{m}$
7. b) and d) have no meaning
8.a) $(216)^{\frac{1}{3}} \mathrm{~cm}$
b) $6(216)^{\frac{2}{3}} \mathrm{~cm}^{2}$
c) edge length $=6 \mathrm{~cm}$, surface area $=216 \mathrm{~cm}^{2}$
9.a) edge length $=V^{\frac{1}{3}} \mathrm{~cm}=\sqrt[3]{V} \mathrm{~cm}$
b) area $=V^{\frac{2}{3}} \mathrm{~cm}^{2}=(\sqrt[3]{V})^{2} \mathrm{~cm}^{2}$
10.a) $5=25^{\frac{1}{2}}$
b) $8=512^{\frac{1}{3}} \quad$ c) $-3=(-27)^{\frac{1}{3}}$
d) $\frac{1}{4}=16^{-\frac{1}{2}}$
e) $6=\left(\frac{1}{36}\right)^{-\frac{1}{2}} \quad$ f) $100=1000^{\frac{2}{3}}$
8. B 12. D
9. \square

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

