Exponents and Radicals Lesson #3: Entire Radicals and Mixed Radicals - Part One

Recall the following from Lesson #2.

- The product(quotient) of the roots of two numbers is equal to the root of the product (quotient) of the two numbers.
- The sum (difference) of the roots of two numbers is NOT equal to the root of the sum (difference) of the two numbers.

In general $\sqrt{a} \times \sqrt{b} = \sqrt{ab}$ where $a, b \ge 0$ and $\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$ where $a \ge 0, b > 0$.

In this lesson we use the above rules in reverse:

$$\sqrt{ab} = \sqrt{a} \times \sqrt{b}$$
 where $a, b \ge 0$ and $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$ where $a \ge 0, b > 0$.

Write the following as a product or quotient of radicals.

a)
$$\sqrt{24} = \sqrt{4 \times 1} = 6 \times 4 \times 16$$
 b) $\sqrt{18} = \sqrt{9 \times 1} = 2 \times 16 \times 12$ = $3\sqrt{2}$ c) $\sqrt{\frac{11}{4}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{2} = \frac{\sqrt{1}}{2}$

Entire Radicals and Mixed Radicals

Use a calculator to approximate the value of each radical to 5 decimal places.

Complete the following to explain why the three radicals are equivalent.
$$\sqrt{80} = \sqrt{4 \times 20} = \sqrt{80} = \sqrt{4 \times 20} = \sqrt{80} = \sqrt{16 \times 5} = \sqrt{1$$

 $\sqrt{80}$ is an example of an **entire radical**; the number is entirely under the root symbol.

 $2\sqrt{20}$ and $4\sqrt{5}$ are examples of **mixed radicals**.

Copyright @ by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

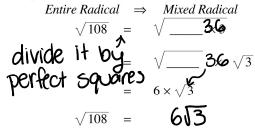
Exponents and Radicals Lesson #3: Entire Radicals and Mixed Radicals- Part One

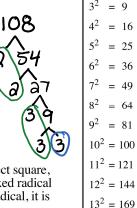
- Entire/Pure Radicals

 Radicals expressed in the form $\sqrt[n]{b}$ are called entire (or pure) radicals.

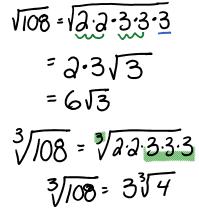
Mixed Radicals

- Radicals expressed in the form $a\sqrt[n]{b}$ are called mixed radicals.
- For example, $\sqrt{25}$, $\sqrt{80}$, $\sqrt[3]{17}$.


Every mixed radical can be expressed as an entire radical.

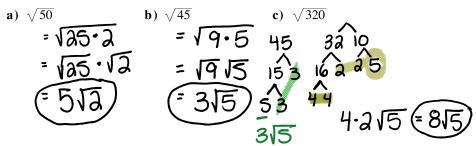

To determine if an entire radical (with an index of 2) can be expressed as a mixed radical, we need to check if the number has a factor which is a perfect square.

Converting Entire Radicals (with an index of 2) to Mixed Radicals


An entire radical of index 2 may be expressed as a mixed radical when the highest perfect square has been factored out of the entire radical.

Complete the following to convert $\sqrt{108}$ to a mixed radical.

 $14^2 = 196$ $15^2 = 225$



If the perfect square which is factored out is <u>not</u> the highest perfect square, then the process will require more than one step to obtain the mixed radical in simplest form. When converting an entire radical to a mixed radical, it is expected that the answer will be in simplest form.

Convert the following entire radicals to mixed radicals in simplest form.

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Exponents and Radicals Lesson #3: Entire Radicals and Mixed Radicals- Part One 1

Convert the following radicals to mixed radicals in simplest form.

a)
$$2\sqrt{192}$$
 $\frac{1}{2}$
 \frac

Converting Entire Radicals (with an index of 3 or greater) to Mixed Radicals

An entire radical of index 3 may be expressed as a mixed radical when the highest perfect cube has been factored out of the entire radical. An entire radical of index 3 may be expressed as a mixed radical when the highest perfect cube has been factored out of the entire radical.

Complete the following to convert $\sqrt[3]{54}$ to a mixed radical.

Entire Radical
$$\Rightarrow$$
 Mixed Radical $\sqrt[3]{54} = \sqrt[3]{2}$

$$= \sqrt[3]{2}$$

$$= \sqrt[3]{2}$$

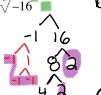
$$= \sqrt[3]{2}$$

$$= \sqrt[3]{2}$$

$$= \sqrt[3]{2}$$

$$\sqrt[3]{54} = \sqrt[3]{2}$$

 $10^3 = 1000$


A similar process is involved for indices greater than 3.



Convert the following radicals to mixed radicals in simplest form.

Complete Assignment Questions #6 - #9

(2,3,4) aceg, (5,6) ac, 7

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement

Exponents and Radicals Lesson #3: Entire Radicals and Mixed Radicals-Part One

On L1-4

Extension: Radicals involving Variables (Entire to Mixed)

Since $x^3 \times x^3 = x^6$, then $\sqrt{x^6} =$ ____. Also, since $x^5 \times x^5 \times x^5 = x^{15}$ then $\sqrt[3]{x^{15}} =$ ____.

So
$$\sqrt{x^4} =$$
_____. $\sqrt{y^{10}} =$ _____. $\sqrt{a^8b^6} =$ _____. $\sqrt[3]{x^{24}} =$ ____. $\sqrt[3]{y^6} =$ ____.

Complete the following to convert $\sqrt{x^5}$ to a mixed radical.

$$\begin{array}{rcl} \textit{Entire Radical} & \Rightarrow & \textit{Mixed Radical} \\ \sqrt{x^5} & = & \sqrt{x^4 \times x} \\ & = & \sqrt{\times \sqrt{x}} \\ & = & \times \sqrt{x} \\ \sqrt{x^5} & = & \end{array}$$

Convert the following entire radicals to mixed radicals in simplest form.

a)
$$\sqrt{a^7}$$

b)
$$\sqrt{t^9}$$
 c) $\sqrt[3]{x^5}$

c)
$$\sqrt[3]{x^2}$$

d)
$$\sqrt[3]{x}$$

Convert the following entire radicals to mixed radicals in simplest form.

- **a)** $\sqrt{x^6y^5}$ **b)** $\sqrt{18x^3}$ **c)** $\sqrt{32y^7z^8}$ **d)** $\sqrt[3]{40x^4y^9}$

Complete Assignment Questions #10 - #12

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Exponents and Radicals Lesson #3: Entire Radicals and Mixed Radicals- Part One 19

Assignment

- 1. Identify whether each radical is written as a mixed radical or an entire radical.
 - a) $\sqrt{35}$
- **b**) $2\sqrt{7}$
- **c**) $\sqrt{81}$
- **d**) $0.3\sqrt{6}$
- 2. Convert the following radicals to mixed radicals in simplest form.
 - a) $\sqrt{8}$
- **b**) $\sqrt{20}$
- **c**) $\sqrt{75}$
- **d**) $\sqrt{98}$

- - $3\sqrt{32}$ **f**) $-5\sqrt{45}$ **g**) $2\sqrt{54}$ **h**) $-4\sqrt{48}$

- **3.** Convert the following radicals to mixed radicals in simplest form.
 - **a**) $\sqrt{96}$
- **b**) $\sqrt{242}$
- c) $-\frac{2}{3}\sqrt{180}$ d) $\frac{1}{8}\sqrt{320}$

- **e)** $\sqrt{245}$ **f)** $4\sqrt{338}$
- **g**) $\sqrt{1250}$ **h**) $\sqrt{980}$

Copyright @ by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

- **20** Exponents and Radicals Lesson #3: Entire Radicals and Mixed Radicals- Part One
- **4.** Convert the following radicals to mixed radicals in simplest form. There are two which cannot be converted. Identify them and explain why they cannot be converted to mixed radicals.
 - **a**) $-\frac{5}{6}\sqrt{304}$ **b**) $\sqrt{66}$ **c**) $4\sqrt{272}$ **d**) $-3\sqrt{288}$

- **e**) $2\sqrt{369}$ **f**) $\sqrt{364}$ **g**) $\frac{2}{5}\sqrt{450}$ **h**) $\frac{7}{11}\sqrt{341}$

- **5.** Convert the following radicals to mixed radicals where the radicand is a whole number. **a)** $\sqrt{\frac{2}{9}}$ **b)** $\sqrt{\frac{5}{4}}$ **c)** $\sqrt{\frac{18}{25}}$ **d)** $7\sqrt{\frac{20}{49}}$

- 6. Convert the following radicals to mixed radicals in simplest form. a) $\sqrt[3]{48}$ b) $\sqrt[3]{128}$ c) $\sqrt[3]{2000}$ d) $5\sqrt[3]{-81}$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Exponents and Radicals Lesson #3: Entire Radicals and Mixed Radicals- Part One

- 7. Convert the following radicals to mixed radicals in simplest form.
 - **a)** $\frac{5}{6}\sqrt[3]{108}$
- **b**) $5\sqrt[4]{162}$

81 wixed radical, and recorded to be simplified.

15次

Multiple Choice 8. $\sqrt[3]{240}$ is equivalent to A. $2\sqrt[3]{40}$ B. $4\sqrt[3]{15}$ C. $2\sqrt[3]{30}$ D. $8\sqrt[3]{30}$

Numerical Response 9. When $\sqrt[4]{891}$ is converted to the form $3\sqrt[4]{x}$, the value of x is _____.

(Record your answer in the numerical response box from left to right)

Extension Assignment

- **10.** Express each as a mixed radical in simplest form.

- **a)** $\sqrt{a^5}$ **b)** $\sqrt{t^3}$ **c)** $\sqrt{x^{11}}$ **d)** $\sqrt[3]{x^4}$ **e)** $\sqrt[3]{b^8}$ **f)** $\sqrt[4]{x^6}$

- **a)** $\sqrt{a^5}$ **b)** $\sqrt{t^3}$ **c)** $\sqrt{x^{11}}$ **d)** $\sqrt[3]{x^4}$ **e)** $\sqrt[3]{b^8}$ **f)** $\sqrt[4]{x^6}$

Copyright @ by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

- Exponents and Radicals Lesson #3: Entire Radicals and Mixed Radicals- Part One
- 11. Express each as a mixed radical in simplest form.
- a) $\sqrt{8v^2}$
- **b**) $\sqrt{16p^3}$
- c) $\sqrt{75y^3z^4}$

- **d)** $\sqrt[3]{2000x^7}$ **e)** $5\sqrt{28c^4d^3}$ **f)** $-6\sqrt{29a^4b^8}$

- Multiple 12. $\sqrt{3x} \sqrt{2x}$ is equivalent to

 - **A.** $\sqrt{6x}$ **B.** $\sqrt{36x^2}$

 - **C.** $6\sqrt{x}$ **D.** $x\sqrt{6}$

Answer Key

- **1.** a) entire **b)** mixed **c)** entire **d)** mixed **2.** a) $2\sqrt{2}$ b) $2\sqrt{5}$ c) $5\sqrt{3}$ d) $7\sqrt{2}$ e) $12\sqrt{2}$ f) $-15\sqrt{5}$ g) $6\sqrt{6}$ h) $-16\sqrt{3}$
- **3.** a) $4\sqrt{6}$ b) $11\sqrt{2}$ c) $-4\sqrt{5}$ d) $\sqrt{5}$ e) $7\sqrt{5}$ f) $52\sqrt{2}$ g) $25\sqrt{2}$ h) $14\sqrt{5}$
- **4.** a) $-\frac{10}{3}\sqrt{19}$ b) cannot be converted because 66 does not have a factor which is a perfect square.
 - **d**) $-36\sqrt{2}$ **e**) $6\sqrt{41}$ **f**) $2\sqrt{91}$
- **c)** $16\sqrt{17}$ **d)** $-36\sqrt{2}$ **e)** $6\sqrt{41}$ **f)** $2\sqrt{91}$ **g)** $6\sqrt{2}$ **h)** cannot be converted because 341 does not have a factor which is a perfect square. **5. a)** $\frac{1}{3}\sqrt{2}$ **b)** $\frac{1}{2}\sqrt{5}$ **c)** $\frac{3}{5}\sqrt{2}$ **d)** $2\sqrt{5}$ **6. a)** $2\sqrt[3]{6}$ **b)** $4\sqrt[3]{2}$ **c)** $10\sqrt[3]{2}$ **d)** $-15\sqrt[3]{3}$ **7. a)** $\frac{5}{2}\sqrt[3]{4}$ **b)** $15\sqrt[4]{2}$ **c)** $-2\sqrt[5]{6}$ **d)** $-10\sqrt[3]{5}$
- 8. C 9. 1 1
- **10.a**) $a^2\sqrt{a}$ **b**) $t\sqrt{t}$ **c**) $x^5\sqrt{x}$ **d**) $x\sqrt[3]{x}$ **e**) $b^2\sqrt[3]{b^2}$ **f**) $x\sqrt[4]{x^2}$ **11.a**) $2y\sqrt{2}$ **b**) $4p\sqrt{p}$ **c**) $5yz^2\sqrt{3y}$ **d**) $10x^2\sqrt[3]{2x}$ **e**) $10c^2d\sqrt{7d}$ **f**) $-6a^2b^4\sqrt{29}$

10.a)
$$a^2\sqrt{a}$$
 b) $t\sqrt{t}$ **c**) $x^3\sqrt{x}$ **d**) $x\sqrt{x}$ **e**) $b^2\sqrt{b^2}$ **f**) $x\sqrt{x^2}$
11.a) $2y\sqrt{2}$ **b**) $4p\sqrt{p}$ **c**) $5yz^2\sqrt{3y}$ **d**) $10x^2\sqrt[3]{2x}$
e) $10c^2d\sqrt{7d}$ **f**) $-6a^2b^4\sqrt{29}$

Copyright © by Absolute Value Publications. This book is **NOT** covered by the Cancopy agreement.

Exponents and Radicals Lesson #4: Entire Radicals and Mixed Radicals - Part Two

Converting Mixed Radicals (with an index of 2) to Entire Radicals

A mixed radical of index 2 may be expressed as an entire radical. This is done by i) converting the number outside the radical symbol into a radical and then 2) multiplying it by the radicand. The number outside the radical symbol can be converted into a radical by raising it to the power of 2.

Complete the following to convert $3\sqrt{14}$ to an entire radical.

Mixed Radical
$$\Rightarrow$$
 Entire Radical $3\sqrt{14} = \sqrt{} \times 3\sqrt{34}$

$$= \sqrt{} \times 94$$

$$3\sqrt{14} = \sqrt{} \times 94$$

Convert the following mixed radicals to entire radicals.

a)
$$2\sqrt{5}$$
. b) $4\sqrt{7} = \sqrt{4.4.7}$ c) $10\sqrt{6}$ = $\sqrt{3.2.5}$ = $\sqrt{16}\sqrt{7}$ = $\sqrt{600}$ = $\sqrt{4.5}$ = $\sqrt{16.7}$ = $\sqrt{600}$ = $\sqrt{12}$

Convert the following mixed radicals to entire radicals.

a)
$$\frac{3}{2}\sqrt{8}$$
b) $0.4\sqrt{50}$
c) $-5\sqrt{7}$
= $-1\sqrt{5}.5\sqrt{7}$
= $-1\sqrt{5}.5\sqrt{$

Complete Assignment Questions #1 - #2

Copyright @ by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

24 Exponents and Radicals Lesson #4: Entire Radicals and Mixed Radicals- Part Two

Converting Mixed Radicals (with an index of 3 or greater) to Entire Radicals

Converting Mixed Radicals (with an index of 3 or greater) to Entire Radicals

A mixed radical of index 3 may be expressed as an entire radical by 1) converting the number outside the radical symbol into a radical and then 2) multiplying it by the radicand. The number outside the radical symbol can be converted into a radical by raising it to the power of 3.

Complete the following to convert $\frac{1}{2}\sqrt[3]{80}$ to an entire radical.

Mixed Radical
$$\Rightarrow$$
 Entire Radical $\frac{1}{2}\sqrt[3]{80} = \sqrt[3]{\times 80}$ $= \sqrt[3]{\times 80}$ $= \sqrt[3]{80}$

Convert the following mixed radicals to entire radicals.

cant go in, even index

a)
$$2\sqrt[4]{3}$$
 b) $-4\sqrt[3]{7}$ c) $2\sqrt[5]{100}$ d) $-3\sqrt[4]{2}$ $3\sqrt[3]{3}$ $3\sqrt[3$

Extension: Radicals involving Variables (Mixed to Entire)

Convert the following mixed radicals to entire radicals.

- **a**) $2\sqrt{x^3}$
- **b**) $a^2\sqrt{a}$
- c) $x^5\sqrt{xy}$
- **d**) $3xy^3 \sqrt[3]{2z^4}$

25

Complete Assignment Question #9

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Exponents and Radicals Lesson #4: Entire Radicals and Mixed Radicals- Part Two

Assignment

1. Convert the following to entire radical form.

ASSIGNMENT

- 1. Convert the following to entire radical form.
 - a) $2\sqrt{6}$
- **b**) $3\sqrt{7}$ **c**) $5\sqrt{15}$ **d**) $12\sqrt{2}$

- **e**) $3\sqrt{25}$ **f**) $-8\sqrt{3}$ **g**) $9\sqrt{10}$ **h**) $-4\sqrt{5}$

- 2. Convert the following to entire radical form. a) $\frac{1}{2}\sqrt{27}$ b) 15 c) $\frac{3}{2}\sqrt{8}$ d) $3^2\sqrt{21}$

- **3.** Convert the following mixed radicals to entire radicals.

- **a)** $2\sqrt[3]{3}$ **b)** $-4\sqrt[3]{6}$ **c)** $5\sqrt[4]{2}$ **d)** $\frac{4}{5}\sqrt[3]{100}$

Copyright @ by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

- 26 Exponents and Radicals Lesson #4: Entire Radicals and Mixed Radicals- Part Two
- **4.** Convert the following mixed radicals to entire radicals.

- **4.** Convert the following mixed radicals to entire radicals.
- **b**) $3\sqrt[3]{4}$ **c**) $-3\sqrt[4]{3}$
- **d**) $-10\sqrt[3]{5}$

- e) $2\sqrt[5]{6}$ f) $\frac{1}{2}\sqrt[3]{16}$ g) $\frac{3}{10}\sqrt[4]{100\,000}$ h) $-5\sqrt[3]{9}$

- **5.** Convert the following mixed radicals to entire radicals.
 - a) $7\sqrt{5}$

- **b**) $2\sqrt[3]{4}$
 - **c**) $-2\sqrt[4]{3}$

- **d**) $-10\sqrt[3]{7}$
- **e**) $8\sqrt{10}$
- **f**) $\frac{1}{3}\sqrt[3]{9}$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Multiple 6. Without using a calculator, determine which of the following radicals is not equal to the

- A. $12\sqrt{2}$
- $\sqrt{288}$
- $6\sqrt{8}$
- $4\sqrt{72}$
- 7. Consider the following two statements:

Statement 1: $-3\sqrt[4]{8} = 3\sqrt[4]{-8}$.

Statement 2: $-2\sqrt[3]{7} = 2\sqrt[3]{-7}$.

Which of the following is correct?

- Α. Both statements are true.
- В. Both statements are false.
- C. Statement 1 is true, and statement 2 is false.
- D. Statement 1 is false, and statement 2 is true.

Numerical	١,
Response	•

8. The mixed radical $\frac{1}{12}\sqrt[3]{128}$ can be converted to a mixed radical in simplest form $a\sqrt[3]{b}$.

The value of a + b, to the nearest tenth, is _

(Record your answer in the numerical response box from left to right)

Copyright @ by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

28 Exponents and Radicals Lesson #4: Entire Radicals and Mixed Radicals- Part Two

Extension Assignment

- **9.** Express as an entire radical.

 - **a**) $6\sqrt{y}$ **b**) $8\sqrt{c^2}$
- c) $10\sqrt{2yz^3}$ d) $-3\sqrt[3]{x^2}$

- **e)** $c\sqrt{c}$ **f)** $x\sqrt{3y^3}$ **g)** $11c^2\sqrt{c^2d}$ **h)** $5a^3b\sqrt{3a^2b}$
- i) $4\sqrt{3} \ a^2b$ j) $2p^2q \sqrt[3]{5pq^2}$ k) $7p^8q^9\sqrt{p^2r}$ l) $2xy^3 \sqrt[4]{9x}$

Answer Key

- **1.** a) $\sqrt{24}$ b) $\sqrt{63}$ c) $\sqrt{375}$ d) $\sqrt{288}$ e) $\sqrt{225}$ f) $-\sqrt{192}$ g) $\sqrt{810}$ h) $-\sqrt{80}$

- **2.** a) $\sqrt{3}$ b) $\sqrt{225}$ c) $\sqrt{18}$ d) $\sqrt{1701}$

- **3. a)** $\sqrt[3]{24}$ **b)** $\sqrt[3]{-384}$ or $-\sqrt[3]{384}$ **c)** $\sqrt[4]{1250}$ **d)** $\sqrt[3]{\frac{256}{5}}$
- **4.** a) $\sqrt[4]{32}$ b) $\sqrt[3]{108}$ c) $-\sqrt[4]{243}$ d) $-\sqrt[3]{5000}$ or $\sqrt[3]{-5000}$ e) $\sqrt[5]{192}$ f) $\sqrt[3]{2}$ g) $\sqrt[4]{810}$ **h**) $-\sqrt[3]{1125}$ or $\sqrt[3]{-1125}$

- **5.** a) $\sqrt{245}$ b) $\sqrt[3]{32}$ c) $-\sqrt[4]{48}$ d) $-\sqrt[3]{7000}$ or $\sqrt[3]{-7000}$ e) $\sqrt{640}$ f) $\sqrt[3]{\frac{1}{3}}$

- 7. D 8. 2 .

Copyright @ by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

