Prime Factorization and Exponents Lesson \#5: Integral Exponents

The Negative Exponent

a) Complete the patterns below.

$$
10^{3}=1000
$$

$10^{2}=1 \underline{00}$
$10^{1}=10$
$10^{0}=1$

$$
=\frac{1}{10^{1}}
$$

$10^{-1}=\frac{1}{10}=\frac{1}{10^{1}}$

$$
\begin{aligned}
& 3^{3}=27 \\
& 3^{2}=9{ }^{2} 3 \\
& 3^{1}=3 \\
& 3^{0}=1
\end{aligned}
$$

$$
3^{-1}=\frac{1}{3}^{\div 3}
$$

$$
a^{0}=1
$$

$a^{-1}=\frac{1}{a}$
$10^{-2}=\frac{1}{10^{2}}=\frac{1}{100}$
$3^{-2}=\frac{1}{3^{2}}=\frac{1}{9}$
$d^{-2}=\frac{1}{a^{2}}$
negative exporents
means the power
moves to the bottom
$10^{-3}=\frac{1}{10^{3}}=\frac{1}{1000}$
$3^{-3}=\frac{1}{3^{3}}=\frac{1}{27}$
$a^{-3}=\frac{1}{a^{3}}$ $a^{a=}=\frac{1}{a}$
b) Write the following with positive exponents.
i) $10^{-7}=\frac{1}{10^{7}}$
ii) $3^{-5} \frac{1}{3^{5}}$
iii) $a^{-n} \frac{1}{a^{n}}$

Using the Exponent Laws to Define the Negative Exponent

Consider the expression $5^{4} \div 5^{7}$.
a) Evaluate the expression as an exact value using a calculator. $=0 . Q Q 8$
b) Complete the following to evaluate the expression.
$5^{4}+5^{7}=\frac{5 \cdot \beta \cdot 8 \cdot 8}{5 \cdot 5 \cdot 5 \cdot 8 \cdot 5 \cdot 5 \cdot 5)}=\frac{1}{5^{-1}}=\frac{1}{125}$
c) Use the quotient law to complete the following.
$5^{4} \div 5^{7}=5^{\boxed{4}-\sqrt{0}}=5^{-\frac{3}{4}}$
d) The results in a) to c) are examples of a general rule when a base is raised to a negative exponent. Complete: $a^{-p}=\frac{1}{a^{p}}$
e) Write the following with positive exponents and evaluate.
i) $2^{-1}=\frac{1}{2}=0.5$
ii) $3^{-2}=\frac{1}{3^{2}}=\frac{1}{9}$
iii) $4^{-3}=\frac{1}{4^{3}}=\frac{1}{64}$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

The Negative Exponent in the Denominator

Use the rule for division of fractions to show that $\frac{1}{4^{-3}}=4^{3}$. Use a calculator to confirm.

negative exponent on the bottom
 means the power moves to the top

Negative Exponent Law
ex. $\frac{1}{4^{-3}}=\frac{4^{3}}{1}=64$
A base (not including zero) raised to a negative exponent has the following properties:

a) $\begin{aligned} & \frac{8^{3}}{8^{-1}}=8^{4} \text { True } \\ & 8^{3-(-1)}=8^{3+1}=8^{4}\end{aligned}$.
b) $\frac{8_{1}^{3} 4}{4^{1}}=2^{4}$ False
c) $-3 \frac{1}{a^{3}}$ True

$$
8^{3-(-1)}=8^{3+1}=8^{4}
$$

Identify the following as true or false.

$$
=\frac{\left(2^{3}\right)^{3}}{\left(2^{2}\right)^{-1}}=\frac{2^{9}}{2^{-2}}=2^{9-(-2)}=2^{11}
$$

Simplify, express with positive exponents, and evaluate without using a calculator.
a) $4^{5} \times 4^{-3}$
b) $3^{2} \times 3^{-5}$
c) $\frac{1}{2^{-5}} \uparrow$
d) $\frac{\sigma^{-5}}{6+5}$
e) $\left.\quad 2^{\frac{3}{y}-1}-\frac{1}{8}\right]^{-3}=\frac{1}{2^{3}}$
$6^{-7-(-5)}=6^{-2}=\frac{1}{6^{2}}=\frac{1}{36}$

Explain why $\quad \begin{gathered}2 p^{-3} \neq \frac{1}{2 p^{3}} . \\ \downarrow\end{gathered}$
so the exponent (-3) is not
$=\frac{2}{p^{3}}$
connected to the coefficient (2).
if, $(2 p)^{-3} \stackrel{\text { tan }}{=} \frac{1}{(2)^{3}}$
Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.
a) $g^{-4} \times g^{-3}$
b) $6 x^{2} \div 2 x^{7}$
$=a^{-4+(-3)}$ $=\frac{6 x^{2}}{n x^{7}}=3 x^{2-7}$
c) $\frac{y^{6}}{2 y^{-5}} \frac{1}{2} y^{6-(-5)}$
a) $a \times a$
$=a^{-4}(-3)$
$=a^{-4-3}=a^{-7}=\frac{1}{a^{7}}$
d)

D) $O X \div \angle x$

$$
\begin{aligned}
& =\frac{6 x^{2}}{2 x^{1}}=3 x^{2-7} \\
& =3 x^{-5}=\frac{3}{x^{5}}
\end{aligned}
$$

e)

c) $\frac{20^{5}}{} \dot{2}^{j}$

- $\frac{(5)^{212}}{5 q^{2}}=\frac{1}{\left(5 q^{4}\right)\left(5 p^{2}\right.}$

Simplifying a Fractional Base with a Negative Exponent

Consider the expression $\left(\frac{2}{3}\right)^{-4}$.
a) Complete the following $\left(\frac{2}{3}\right)^{-4}=\frac{1}{\left(\frac{2}{3}\right)^{4}}=\frac{1}{\frac{2^{4}}{3^{4}}}=1 \times \frac{3^{4}}{2^{4}}=\frac{3^{4}}{2^{4}}$
b) Evaluate $\left(\frac{3}{2}\right)^{4}=\frac{3^{4}}{2^{4}}$
c) Classify the following statement as true or false.

$$
\left(\frac{2}{3}\right)^{\Theta^{4}}=\left(\frac{3}{2}\right)^{4} T P U P
$$

d) Suggest a quick method for evaluating $\left.\frac{5}{2}\right)^{\Theta \beta}$ without using a calculator.

Complete Assignment Questions \#1 - \#15
Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Assignment

1. Write the following with positive exponents.
a) x^{-3}
b) y^{-9}
c) 4^{-1}
d) $\frac{1}{a^{-5}}$
e) $\frac{1}{6^{-2}}$
2. Without using a calculator show that $\frac{3}{5^{-2}}=75$.
3. Simplify, express with positive exponents, and evaluate without using a calculator.
a) $4^{3} \times 4^{-4}$
b) $3^{0} \times 3^{-3}$
c) $\frac{1}{7^{-2}}$
d) $\frac{10^{-3}}{10}$
e) $\left(3^{2}\right)^{-2}$
4. Express with positive exponents.
a) $n^{2} m^{-5}$
b) $c^{-2} x^{-5}$
c) $16 h^{-1}$
d) $\frac{2}{3} b^{-8}$
e) $\left(y^{-4}\right)^{-2}$
f) $\frac{t^{-5}}{4}$
g) $\frac{1}{4 x^{-9}}$
h) $\frac{4}{x^{-9}}$
i) $\frac{a^{2}}{b^{-7}}$
j) $\frac{a^{-2}}{b^{7}}$
5. Evaluate the following without using a calculator.
a) -3^{-2}
b) $(-3)^{-2}$
c) $-7^{2} \cdot 8^{-2}$
d) $(-8.3)^{0}$
e) $\left[-(3.9)^{0}\right]^{-2}$
6. Use a calculator to find the exact value of the following.
a) -4^{-4}
b) $(-7)^{-3}$
c) $(0.75)^{-3}$
d) $(-0.025)^{-2}$
e) $\left(\frac{4}{7}\right)^{-3}$
7. State whether the following are true or false.
a) $6 x^{-3}=\frac{6}{x^{3}}$
b) $5 a^{-4}=\frac{1}{5 a^{4}}$
c) $\frac{4}{b^{-6}}=4 b^{6}$
d) $\frac{x^{-3}}{2}=\frac{2}{x^{3}}$
e) $\frac{1}{5 y^{-1}}=5 y$
f) $\frac{1}{\frac{1}{4} p}=\frac{1}{4} p^{-1}$
g) $(3 x)^{5}=\frac{1}{(3 x)^{-5}}$
h) $\frac{1}{\left(\frac{1}{7} a\right)^{-2}}=49 a^{2}$
8. Simplify and write the answer with positive exponents.
a) $x^{10} \cdot x^{-5}$
b) $m^{5} \div m^{8}$
c) $b^{-1} \cdot b^{-3}$
d) $-w^{0} \div w^{5}$
9. Simplify and write the answer with positive exponents.
a) $a^{8} \times a^{-10}$
b) $10 x^{2} \div 2 x^{-1}$
c) $\frac{6 y^{-6}}{2 y^{-4}}$
d) $\frac{2 a^{-5}}{4 b^{6}}$
e) $-7 x^{-2}$
f) $-(7 x)^{-2}$
g) $(-7 x)^{-2}$
h) $\frac{(-7 x)^{-2}}{-7 x^{-2}}$
10. Simplify each expression, writing the answer with positive exponents.
a) $a^{-3} a^{-3}$
b) $\left(5 b^{8} b^{-12}\right)\left(-10 b^{3} b^{-12}\right)$
c) $\left(-7 x^{3} x^{-5}\right)\left(x^{2} x^{-3}\right)$
d) $\left(-2 a^{3}\right)^{-3} \cdot 3 a^{12}$
e) $\frac{16 a^{6} b^{-3}}{-4 a^{6} b^{3}}$
f) $\left(-3 a^{5} b^{-3} c^{0}\right)^{-2}$
11. Simplify. Write the final answer with positive exponents.
a) $\frac{32 a^{2} b^{-4}}{4 a^{-8} b^{-2}} \times \frac{-8 a^{-2}}{-3 b^{-3}}$
b) $\frac{10\left(p^{3} q^{2} r^{0}\right)^{-3}}{\left(8 p^{-3} q^{5} r^{3}\right)^{-2}}$
c) $\left(-2 x^{5} y^{3} z^{8}\right)^{-2}\left(-2 x^{2} y^{-8} z^{12}\right)^{3}$
d) $\left(5 a^{3} b^{2}\right)\left(-2 a^{-2} b\right)^{-3} \div\left(-5 a^{8} b^{-9}\right)^{-2}$
12. Evaluate the following without using a calculator.
a) $\left(\frac{2}{3}\right)^{-3}$
b) $\left(\frac{1}{5}\right)^{-2}$
c) $\left(\frac{8}{5}\right)^{-1}$
d) $\left(\frac{3}{2}\right)^{-4}$
13. Simplify. Write the final answers with positive exponents.
a) $\left(\frac{c}{d}\right)^{-3}$
b) $\left(\frac{x}{4}\right)^{-3}$
c) $\left(\frac{p^{2}}{r^{4}}\right)^{-3}$
d) $\left(\frac{a^{-2}}{b^{-5}}\right)^{-3}$
e) $\left(\frac{-12 x^{-3}}{6 y^{-8}}\right)^{-1}$
f) $\left(\frac{12 x^{3} y^{-1}}{-8 x^{-1} y^{5}}\right)^{-2}$

Multiple
Choice 14. The value of $\frac{1^{-3}+3^{0}}{2^{-1}}$ is
A. 1
B. 4
C. 8
D. 12
15. Which of the following statements are true?
i) $3 a^{-3}=\frac{1}{3 a^{3}}$
ii) $8 x^{4} \div 4 x^{7}=\frac{1}{2 x^{3}}$
iii) $\frac{1}{2 a}=2 a^{-1}$
A. i) only
B. ii) only
C. iii) only
D. none of the statements are true

Answer Key

1. a) $\frac{1}{x^{3}}$
b) $\frac{1}{y^{9}}$
c) $\frac{1}{4}$
d) a^{5}
e) 6^{2}
2. $\frac{3}{5^{-2}}=3 \times 5^{2}=3 \times 25=75$
3. a) $\frac{1}{4^{1}}=\frac{1}{4}$
b) $\frac{1}{3^{3}}=\frac{1}{27}$
c) $7^{2}=49$
d) $\frac{1}{10^{4}}=\frac{1}{10000}$
e) $\frac{1}{3^{4}}=\frac{1}{81}$
4. a) $\frac{n^{2}}{m^{5}}$
b) $\frac{1}{c^{2} x^{5}}$
c) $\frac{16}{h}$
d) $\frac{2}{3 b^{8}}$
e) y^{8}
f) $\frac{1}{4 t^{5}}$
g) $\frac{x^{9}}{4}$
h) $4 x^{9}$
i) $a^{2} b^{7}$
j) $\frac{1}{a^{2} b^{7}}$
5. a) $-\frac{1}{9}$
b) $\frac{1}{9}$
c) $-\frac{49}{64}$
d) 1
e) 1
6. a) $-\frac{1}{256}$
b) $-\frac{1}{343}$
c) $\frac{64}{27}$
d) 1600
e) $\frac{343}{64}$
7. a) T
c) T
d) F
e) F
f) F
g) T
h) F
8. a) x^{5}
b) $\frac{1}{m^{3}}$
c) $\frac{1}{b^{4}}$
d) $-\frac{1}{w^{5}}$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.
9. a) $\frac{1}{a^{2}}$
b) $5 x^{3}$
c) $\frac{3}{y^{2}}$
d) $\frac{1}{2 a^{5} b^{6}}$
e) $-\frac{7}{x^{2}}$
f) $-\frac{1}{49 x^{2}}$
g) $\frac{1}{49 x^{2}}$
h) $-\frac{1}{343}$
10.a) $\frac{1}{a^{6}}$
b) $-\frac{50}{b^{13}}$
c) $-\frac{7}{x^{3}}$
d) $-\frac{3}{8} a^{3}$
e) $-\frac{4}{b^{6}}$
f) $\frac{b^{6}}{9 a^{10}}$
11.a) $\frac{64}{3} a^{8} b$
b) $\frac{640 q^{4} r^{6}}{p^{15}}$
c) $-\frac{2 z^{20}}{x^{4} y^{30}}$
d) $-\frac{125 a^{25}}{8 b^{19}}$
12.a) $\frac{27}{8}$
b) 25
c) $\frac{5}{8}$
d) $\frac{16}{81}$
13.a) $\frac{d^{3}}{c^{3}}$
b) $\frac{64}{x^{3}}$
c) $\frac{r^{12}}{p^{6}}$
d) $\frac{a^{6}}{b^{15}}$
e) $-\frac{x^{3}}{2 y^{8}}$
f) $\frac{4 y^{12}}{9 x^{8}}$
14. B
15. D

