Lesson 2: Factorial Notation and Permutations

Permutations and Combinations Page 1

Permutations and Combinations Lesson \#2: Factorial Notation and Permutations

Investigating Factorial Notation

Consider how many ways there are of arranging 6 different books side by side on a shelf. Using the fundamental counting principle, we calculate the product $6 \times 5 \times 4 \times 3 \times 2 \times 1$. In mathematics this product can be written in a simplified form called factorial notation. $6 \times 5 \times 4 \times 3 \times 2 \times 1$ is denoted by 6 . (" 6 factorial" or "factorial 6 ").
a) Without using a calculator, determine the value of:
i) 4 ! $=4 \times 3 \times 2 \times 1$
4 factorial
ii) 3 ! $\times 2$ 2!
$3 \times 2 \times 1 \times 2 \times 1=12$

Notice that 6 ! can be written in a variety of ways.

$$
\begin{aligned}
& 6!=6 \times 5 \times 4 \times 3 \times 2 \times 1 \\
& 6!=6 \times\{\times 4 \times 3 \times 2! \\
& 6!=6 \times 5 \times 4 \times 3! \\
& 6!=6 \times 5 \times 4! \\
& 6!=6 \times 5!
\end{aligned}
$$

The table above can be used to help us simplify quotients such as $\frac{6!}{7!}$

$$
\frac{6!}{4!}=\frac{6 \times 5 \times 4}{4!}=6 \times 5=30 . \quad \frac{6 \times 5 \times 4 \times 3 \times 2 \times y^{7}}{4 \times 3 \times 5 \times 1}
$$

b) Express 5 ! as a product in four different ways.

$$
5!=5 \times 4!\quad 5!=\underline{5} \times 4 \times 3!\quad 5!=\underline{5} \times 4 \times 3 \times 2!\quad 5!=\underline{5 \times 4 \times 3 \times 2 \times 1}
$$

c) Complete the following: i) $12!=\underline{12} \times 11!\quad$ ii) $8!=\underline{8 \times 7} \times 6!$
d) Express as a quotient of factorials.
i) $6 \times 5 \times 4 \mathbf{w}=\frac{6!}{3!}$
ii) $15 \times 14 \times 13 \times 12=\frac{15!}{11!}=\frac{15 \times 14 \times 13 \times 12 \times 1!}{H!}$
e) Without using a calculator, simplify
i) $\frac{10!}{7!}=\frac{10 \times 9 \times 8 \times 7!}{7!}$
ii) $\frac{8!}{5!3!}=\frac{8 \times 7 \times 6 \times 5!}{5!3!}$
$=10 \times 9 \times 8=720$

$$
=\frac{8 \times 7 \times 6}{3 \times 2 \times 1}=\frac{8 \times 7 \times 6}{6}=56
$$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

In general $\quad n!=n(n-1)(n-2)(n-3) \ldots(3)(2)(1)$, where $n \in W$.

- Note that n has to be a whole number.
- $0!=1$, and the reasoning for this will be given later in this lesson.
$n!$ can be written as a product in many different ways.

$$
\text { For example } \begin{aligned}
n! & =n(n-1)! \\
& n!=n(n-1)(n-2)! \\
& n!=n(n-1)(n-2)(n-3)!, \text { etc. }
\end{aligned}
$$

Class $E x . * 2$ Simplify the following expressions. Leave the answer in product form where appropriate.
a) $\frac{(n+2)!}{n!}$
b) $\frac{(n-2)!}{(n-1)!}$
c) $\frac{n!}{n(n-1)}$
$=\frac{(n+2)(n+1) n!}{n!}$
$=(n+2)(n+1)$
$\frac{(n-2)!}{(n-1)(n-2)!}$
$=\frac{n(n-1)(n-2)!}{h(n-2)}$
$=\frac{1}{n-1}$
$=(n-2)!$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Factorial Notation on a Calculator

Many calculators have a factorial key which can be used to simplify calculations.
a) Use the factorial key on a calculator to evaluate the following.

$$
6!=720 \quad 9!=362880
$$

b) To simplify a quantity like $\frac{10 \text { ! }}{7!3!}$ on a calculator we can evaluate numerator and denominator separately and then divide, or enter it in one calculation using brackets.
i) Complete the work below.

$$
\frac{10!}{7!3!}=\frac{3628800}{30240}=\quad \text { or } \quad \frac{10!}{(7!3!)}=
$$

ii) To verify without using a calculator, complete the work below.

$$
\frac{10!}{7!3!}=\frac{10 \times 9 \times 8 \times 7!}{7!\times 6}=
$$

Complete Assignment Questions \#1 - \#6

Permutations

An internet site's access code consists of three digits. Knowing the three digits is not enough to access the site. The digits have to be entered in the correct order. The order of the arrangement of the digits is important.

John cannot remember the access code, except that it contains the digits 3,5 and 7.

- List all the arrangements of these three digits that John could use to determine the access code.
$357,375,537$,
$573,735,753$
they ore 6 permutations

There are six possible arrangements to consider and only one of them will access the site. This type of arrangement, where the order is important, is called a permutation.

A permutation is an arrangement of a set of elements in which the order of the elements is important.

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Permutations of " n " Different Elements Taken " n " at a Time

a) List all the arrangements of the letters of the word CAT.
CAT
CT A
ACT
ATC
ta tad
$1!=1$
$2!=2$
$3!=3 \cdot 2 \cdot 1=6$
$4!=4 \cdot 3 \cdot 2 \cdot 1=24$
b) Write the number of permutations in factorial notation.

This is an example of the following general rule:
The number of permutations of " n " different elements taken all at a time is n !

Determine the number of permutations of the letters of each word.
a) REGINA

$$
6!=720
$$

b) KELOWNA
$7!=5040$

Permutations of " n " Different Elements Taken " r " at a Time ($r \leq n$)
a) Use the fundamental counting principle to determine how many three letter arrangements can be made from the letters of the word GRAPHITE.

(8) (1) © (6) $=336$

In the example above we have found the number of permutations of $8(n)$ elements taken $3(r)$ at a time. This is denoted by ${ }_{8} P_{3}$.

$$
{ }_{8} P_{3}=8 \times 7 \times 6=\frac{8 \times 7 \times 6 \times 5!}{5!}=\frac{8!}{(8-3)!}
$$

This is an example of the following general rule: Permutate

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Defining 0!

If we replace r by n in the previous formula, we get the number of permutations of n elements taken n at a time. This we know is $n!$.

$$
{ }_{n} P_{n}=n!=\frac{n!}{(n-n)!}=\frac{n!}{0!} \quad \text { For this to be equal to } n!\text { the value of } 0!\text { must be } 1
$$

$0!$ is defined to have a value of 1 .

In a region, vehicle license plates consist of 2 different letters followed by 4 different digits. If the letters $\mathrm{I}, \mathrm{O}, \mathrm{Y}$, and Z are not used, determine how many different license plates are possible by
a) the fundamental counting principle
b) permutations

2 different letters, not $1,0, y, z$

In many cases involving simple permutations, the fundamental counting principle can be used in place of the permutation formulas.

Complete Assignment Questions \#7-\#14

Assignment

1. Without using a calculator, determine the value of
a) 5 !
b) $\frac{10!}{8!}$
c) $\frac{99!}{100!}$
2. Express as single factorials.
a) $6 \times 5 \times 4 \times 3 \times 2 \times 1$
b) $9 \times 8 \times 7 \times 6$!
c) $(n+2)(n+1) n(n-1) \quad \ldots \times 3 \times 2 \times 1$
3. Express as a quotient of factorials.
a) $9 \times 8 \times 7 \times 6$
b) $20 \times 19 \times 18$
c) $(n+2)(n+1) n$
4. Use a calculator to determine the exact value of the following:
a) 10 !
b) $\frac{8!}{4!}$
c) $\frac{15!}{10!5!}$
d) $\left(\frac{25!}{21!}\right)\left(\frac{7!}{11!}\right)$
5. Simplify the following expressions. Leave the answer in product form where appropriate.
a) $\frac{n!}{n}$
b) $\frac{(n-3)!}{(n-2)!}$
c) $\frac{(n+1)!}{(n-1)!}$
d) $\frac{(3 n)!}{(3 n-2)!}$
6. Solve the equation.
a) $\frac{(n+1)!}{n!}=6$
b) $(n+1)!=6(n-1)$!
c) $\frac{(n+2)!}{n!}=12$
d) $\frac{(n+1)!}{(n-2)!}=20(n-1)$
7. Determine the number of arrangements that can be made using all of the letters in the word
a) DOG
b) DUCK
c) SANDWICH
d) CANMORE
8. Consider the number of five-digit numbers that can be made from the digits $2,3,4,7$, and 9 if no digit can be repeated. Express your answer using
a) factorial notation
b) ${ }_{n} P_{r}$ notation
c) the fundamental counting principle
9. a) Use the formula for ${ }_{n} P_{r}$ to show that ${ }_{7} P_{0}=1$.
b) Explain why n must be greater than or equal to r in the notation ${ }_{n} P_{r}$.
10. In each case determine the number of arrangements of the given letters by
i) using the fundamental counting principle
ii) writing in ${ }_{n} P_{r}$ form and evaluating
a) two letters from the word GOLDEN
b) three letters from the word CHAPTERS
c) four letters from the word WEALTH
d) one letter from the word VALUE
11. How many numbers (up to a maximum of four digit numbers) can be made from the digits $2,3,4$, and 5 if no digit can be repeated?

80 Permutations and Combinations Lesson \#2: Factorial Notation and Permutations
Multiple 12. In a ten-team basketball league, each team plays every other team twice, once at home Choice and once away. The number of games that are scheduled is
A. 45
B. 90
C. 100
D. 180
13. The value of ${ }_{n} P_{2}$ is
A. $\frac{n}{n-2}$
B. $\frac{n!}{2!}$
C. $\frac{n}{2}$
D. $n(n-1)$

Numerical Response
14. In a competition on the back of a cereal packet, seven desirable qualities for a kitchen (eg. spaciousness, versatility, etc.) must be put in order of importance. The number of different entries that must be completed in order to ensure a winning order is \qquad _.
(Record your answer in the numerical response box from left to right.)

Answer Key

1. a) 120
b) 90
c) $\frac{1}{100}$
2. a) $6!$
b) $9!$
c) $(n+2)$!
3. a) $\frac{9!}{5!}$
b) $\frac{20!}{17!}$
c) $\frac{(n+2)!}{(n-1)!}$
4. a) 3628800
b) 1680
c) 3003
d) $\frac{115}{3}$
5. a) $(n-1)$!
b) $\frac{1}{n-2}$
c) $n(n+1)$
d) $3 n(3 n-1)$
6. a) $n=5$
b) $n=2$
c) $n=2$
d) $n=4$
7. a) 6
b) 24
c) 40320
d) 5040
8. a) $5!$
b) ${ }_{5} P_{5}$
c) $5 \times 4 \times 3 \times 2 \times 1=120$
9. a) $7 B=\frac{7!}{(7-0)!}=\frac{7!}{7!}=1$
b) You cannot arrange more elements than the number of elements there are to begin with.
10.a) ${ }_{6} P_{2}-30$
b) ${ }_{8} P_{3}-336$
c) ${ }_{6} P_{4}-360$
d) ${ }_{5} P_{1}-5$
10. 64
11. B
12. D
13.

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

