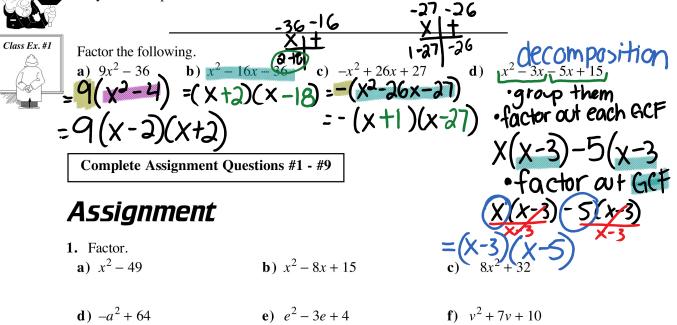
Lesson 5: Factoring Review

Friday, August 31, 2018 2:37 AM

Factoring Polynomial Expressions Lesson #5: Factoring Review

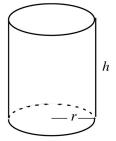

Guidelines for Factoring a Polynomial Expression

If we are asked to factor a polynomial expression, the following guidelines should help us to determine the best method.

- **1.** Look for a common factor. If there is one, take out the common factor and look for further factoring.
 - 2. If there is a binomial expression, look for a difference of squares.
 - 3. If there is a trinomial expression of the form $x^2 + bx + c$, look for factoring by inspection.
- 4. After factoring, check to see if further factoring is possible.

1

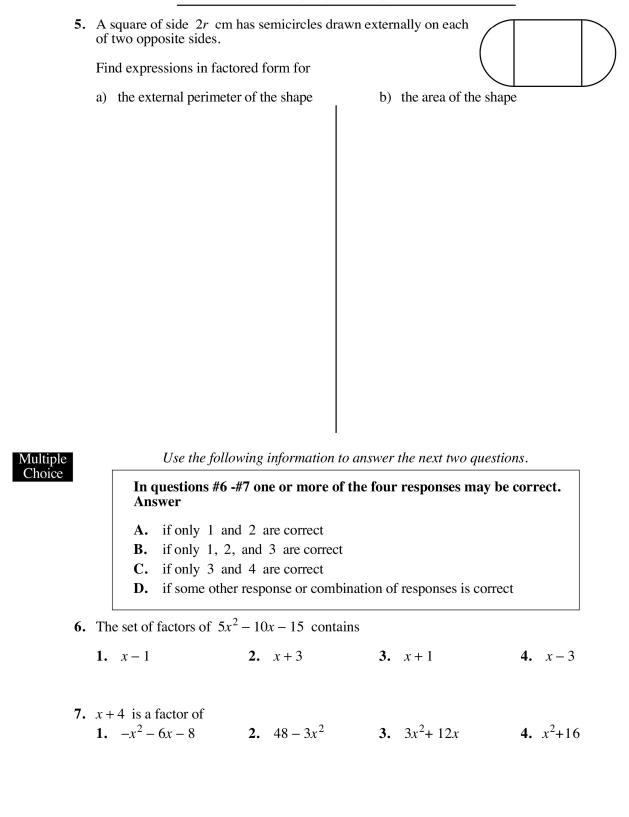
Polynomial expressions of the form $ax^2 + bx + c$ will be discussed in the next math course.


g)
$$a^2 + 2ab - 35b^2$$
 h) $4 - 25t^2$ **i**) $x^2 + 16$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

2. Factor. a) $a^2 - 64b^2$	b) $108 - 3z^2$	c) $-x^2 - 5x - 4$
d) $625p^2 - 1$	e) $-3x^2 - 3x + 36$	f) $8v^2 - 32v - 96$
3. Factor. a) $b^2 - 16 - 6b + 24$	b) $x^3 - 81x$	c) $-256 + t^2$

d)
$$12 - 4x - x^2$$
 e) $x^2 - 8xy - 33y^2$


- 4. The surface area of a cylinder is given by the formula $A = 2\pi r^2 + 2\pi rh$, where *r* is the radius of the base and *h* is the height of the cylinder.
 - a) Calculate the surface area, to the nearest 0.01 cm^2 , of a cylinder which has vertical height 14.5 cm and base diameter 11 cm.

- **b**) Write the formula for A in factored form.
- c) Calculate, using the factored form of A, the surface area of the cylinder to the nearest 0.01 cm^2 .

d) Which method a) or c) is simpler to use?

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Copyright @ by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

 $\pi r^3 + 3\pi r$ is equivalent to 8.

A. $3\pi^2 r^4$ **B.** $3\pi(r^2 + r)$ **C.** $\pi r(2r+3)$ **D.** $\pi r(r^2 + 3)$

Numerical **9.** Triangle *PQR* is right angled at *P*. The area of the triangle is $\frac{1}{2}x^2 + 10x + 18$ cm², where x is a positive integer.

> If the length of PQ is 10 cm, then the length of PR, is _____ cm. (Record your answer in the numerical response box from left to right)

Answer Key

		,					2			
1.		(x-7)(x+7)		b) $(x-5)(x$	/		$8(x^2 + 4)$			
	d)	-(a+8)(x-8)		 e) not factor 	rable	f)	(v + 5)(v	v + 2)		
	g)	(a+7b)(a-5b)		h) $(2-5t)(2$	(2 + 5t)	i)	not facto	orable		
2.	a)	(a - 8b)(a + 8b)		b) $3(6-z)(6-z)(6-z)(6-z)(6-z)(6-z)(6-z)(6-z)$	(5 + z)	c)	-(x+4)	(x + 1)		
			1)	e) $-3(x-3)$	(x + 4)	f)	8(v+2)	(v - 6)		
3	a)	(b-2)(b-4)		b) $x(x-3)($.	$(r+3)$ c^{2}	(t - 4)	(t + 4)			
		$(0^{-2})(0^{-4})$ -(x-2)(x+6)		e) $(x - 11y)$, , ,) (1 -	i)(i + +)			
				, , , ,,	()/					
4.	a)	691.15 cm ²	b)	$A = 2\pi r(r+h)$	c) 691.15	5 cm^2	d) c) is	s simple	er	
	,		,		,			-		
5.	a)	$2r(\pi + 2)$ cm.	b)	$r^2(\pi + 4)$ cm ² .						
		. ,								
6.	C		7.	в	8.D		9.	2	6	
υ.	C		<i>'</i> .	U	0.0			-	5	

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.