Lesson 3: Factoring Trinomials of the Form $\mathrm{x} 2+\mathrm{bx}+\mathrm{c}-$ Part Two
Friday, August 31, $2018 \quad$ 2:37 AM

Factoring Polynomial Expressions Lesson \#3:
 Factoring Trinomial of the Form $x^{2}+b x+c$ - Part Two

Review of Factoring By Inspection

In order to factor $x^{2}+b x+c$ by inspection, we need to find two integers which have a product equal to c and a sum equal to b. If no two such integers exist, then the polynomial cannot be factored.

In order to factor $x^{2}+6 x+9$, we need to find two numbers whose product is $\frac{9}{4}$ and
whose sum is 6 .
In order to factor $x^{2}+1 x-12$, we need to find two numbers whose product is -12 -3
In order to factor $x^{2}+1 x-12$, we need to find two numbers whose product is -12 and whose sum is \qquad .

Recall the following points from the previous lesson.

- If the product is positive then the two integers must be either both positive or both negative.

$$
\begin{array}{cc}
14 \\
1 & -12 \\
3 & -4 \\
2 & -6 \\
-1 & 12 \\
-3 & 4 \\
-3 & 4 \\
\text { in native }
\end{array}
$$

- If the product is negative, then one integer is positive and the other is negative. 6

by inspection.

Factor where possible.
a) $-a^{2}-6 a+27$ $-\left(a^{2}+6 a-27\right)$ $-(a-3)(a+9)$

$$
\text { b) } 2 t^{2}-14 t+20
$$

$$
\begin{aligned} & t \cdot-=\overline{+} O R-\cdots=+ \\ & t \cdot t=+ \end{aligned}
$$

 $+\cdot==$ $+\cdot+O R-\cdots=+$

 $+\cdot==$$+\cdot+O R-\cdots=+$}

$$
\begin{array}{l|l}
27 & \\
39 & 6
\end{array}
$$

$$
\begin{aligned}
& 127 \\
& -39
\end{aligned}
$$

$$
\begin{aligned}
& G C \\
& 10)
\end{aligned}
$$

$$
\begin{aligned}
& 2\left(t^{2}-7 t+10\right) \\
& 2(t-7)(t-5
\end{aligned}
$$

c) $x^{2}-3 x-6$
not possible

$$
\begin{aligned}
& \text { d) } 4 x^{4}-16 x^{3}-20 x^{2} \\
& 4 x^{2}\left(x^{2}-4 x-5\right): 4 x^{2} \\
& -5 x-5
\end{aligned}
$$

[^0]Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Factoring Polynomial Expressions Page 3

Factoring Trinomials of the form $x^{2}+b x y+c y^{2}$
Complete the following statements:
i) $\left(\underset{(x+2)(x+4)}{ }\right.$ can be expanded to $x^{2}+6 x+8$, so $x^{2}+6 x+8$ can be factored to $(x+2)(x+4)$.

Factor.
a) $x^{2}+13 x y+30 y^{2}$, $30^{\text {b) }} x^{2}+71 x y-72 y^{2}$
c) $3 a^{2}-15 a b-252 b^{2}$ GCF:3

Complete Assignment Questions \#6 - \#11

$$
(1,3,4) \begin{gathered}
\text { every } \\
\text { deter } \\
\text { letter }
\end{gathered}, 5,6 a, 7 a
$$

1. Complete the table to find two numbers with the given sum and the given product.

	Sum	Product	Integers
a)	8	-20	
b)	-8	-20	
c)	-1	-20	

	Sum	Product	Integers
d)	3	-70	
e)	-11	28	
f)	0	-16	

2. Factor the following trinomials.
a) $x^{2}-2 x-15$
b) $x^{2}-2 x-24$
c) $x^{2}+2 x-24$
d) $x^{2}+2 x-3$
e) $x^{2}+x-30$
f) $x^{2}-3 x-10$

Factoring Polynomial Expressions Page 5
3. Factor where possible.
a) $x^{2}+10 x+16$
b) $x^{2}-11 x+18$
c) $x^{2}-2 x-8$
d) $x^{2}+3 x-18$
e) $x^{2}-4 x+12$
f) $x^{2}-4 x-12$
g) $x^{2}-10 x+25$
h) $x^{2}+x-20$
i) $m^{2}+21 m+38$
j) $a^{2}-17 a+42$
k) $p^{2}-10 p-9$

1) $p^{2}-9 p-10$
4. Factor.
a) $-x^{2}-7 x-12$
b) $4 x^{2}-28 x-32$
c) $5 x^{2}-20 x+15$
d) $-2 a^{2}+2 a+220$
e) $b^{2} x^{2}-4 b^{2} x-45 b^{2}$
f) $2 x^{3}+2 x^{2}-40 x$
5. Consider the following in which the each letter represents a whole number.

$$
\begin{array}{ll}
x^{2}+4 x-5=(x+A)(x-O) & x^{2}-3 x-54=(x-E)(x+I) \\
x^{3}+2 x^{2}-8 x=x(x-Y)(x+P) & 3 x^{2}-48 x+192=T(x-R)^{2} \\
-5 x^{2}+20 x+105=-5(x+T)(x-H) &
\end{array}
$$

Determine the value of each letter and hence name the fictional character represented by the following code.
(7) (5) (8)
(8)
(4)
(1)
(3)
(3)
(8)

Factoring Polynomial Expressions Page 7
6. Factor.
a) $x^{2}+18 x y+45 y^{2}$
b) $x^{2}+10 x y-24 y^{2}$
c) $a^{2}-12 a b+36 b^{2}$
d) $p^{2}-12 p q+11 q^{2}$
e) $x^{2}+x y-72 y^{2}$
f) $x^{2}-54 x y-112 y^{2}$
7. Factor completely.
a) $4 x^{2}-80 x y+144 y^{2}$
b) $3 b^{2}-15 b v-72 v^{2}$
c) $2 c^{2}+66 c d-140 d^{2}$ in common. This factor is
A. $x-7$
B. $x+7$
C. $x-3$
D. $x+3$
9. One factor of $-m^{3}-m^{2}+6 m$ is
A. $m-2$
B. $m+2$
C. $m-3$
D. $m-6$
10. One factor of $3 x^{2}-6 x y-9 y^{2}$ is
A. $3 x$
B. $x+2 y$
C. $x+3 y$
D. $x+y$
11. The expression $x^{2}-4 x+c$ cannot be factored if c has the value
A. -5
B. 0
C. 4
D. 5

Answer Key

1. a) $-2,10 \quad$ b) $-10,2 \quad$ c) $-5,4 \quad$ d) $-7,10 \quad$ e) $-4,-7 \quad$ f) $-4,4$
2. a) $(x-5)(x+3)$
b) $(x-6)(x+4)$
e) $(x+6)(x-5)$
f) $(x-5)(x+2)$
3. a) $(x+8)(x+2)$
b) $(x-9)(x-2)$
c) $(x+6)(x-4)$
d) $(x+3)(x-1)$
e) not possible
f) $(x-6)(x+2)$
c) $(x+2)(x-4)$
d) $(x+6)(x-3)$
i) $(m+2)(m+19)$
j) $(a-14)(a-3)$
g) $(x-5)^{2}$
h) $(x+5)(x-4)$
4. a) $-(x+3)(x+4)$
b) $4(x-8)(x+1)$
k) not possible
l) $(p-10)(p+1)$
e) $b^{2}(x-9)(x+5)$
f) $2 x(x+5)(x-4)$
c) $5(x-3)(x-1)$
d) $-2(a-11)(a+10)$
5. a) $(x+15 y)(x+3 y)$
b) $(x-2 y)(x+12 y)$
c) $\begin{array}{ll}(a-6 b)^{2} & \text { d) }(p-q)(p-11 q)\end{array}$
e) $(x-8 y)(x+9 y)$
f) $(x+2 y)(x-56 y)$
6. a) $4(x-18 y)(x-2 y)$
b) $3(b-8 v)(b+3 v)$
c) $2(c+35 d)(c-2 d)$
7. A 9. A 10. D 11. D

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

[^0]: Complete Assignment Questions \#1-\#5

