Lesson 3: Factoring Trinomials of the Form x2 + bx + c -Part Two

Friday, August 31, 2018 2:37 AM

Factoring Polynomial Expressions Lesson #3: Factoring Trinomials of the Form $x^2 + bx + c$ - Part Two

Review of Factoring By Inspection

In order to factor $x^2 + bx + c$ by inspection, we need to find two integers which have a <u>product equal to c</u> and a <u>sum equal to b</u>. If no two such integers exist, then the polynomial cannot be factored.

In order to factor $x^2 + 6x + 9$, we need to find two numbers whose product is $\frac{9}{333}$ and whose sum is 6.

In order to factor $x^2 + x - 12$, we need to find two numbers whose product is $-\frac{12}{12}$ and whose sum is $-\frac{1}{12}$.

Recall the following points from the previous lesson.

- If the product is **positive**, then the two integers must be either **both positive** or **both negative**.
- If the product is negative, then one integer is positive and the other is negative

Factor the following trinomials by inspection.
a)
$$x^2 - x - 12$$

(x+3)(x-4) $x^2 + 3x - 18$
Factor the following trinomials by inspection.
(x+3)(x-4) $x^2 + 3x - 18$
(x-3)(x+6) $18^3 + 3x^2 +$

Factor where possible.
a)
$$\frac{4^{2}-6a+27}{-(Q^{2}+6Q-27)}$$
 $\frac{37}{-39}$ $\begin{pmatrix} 27 & 6 \\ x & + \\ -27 & 6 \\ x & + \\ -(Q^{2}+6Q-27) & \frac{1}{37} \\ -($

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Factoring Polynomial Expressions Page 3

1. Complete the table to find two numbers with the given sum and the given product.

	Sum	Product	Integers		Sum	Product	Integers
a)	8	-20		d)	3	-70	
b)	-8	-20		e)	-11	28	
c)	-1	-20		f)	0	-16	

2. Factor the following trinomials.

a) $x^2 - 2x - 15$ b) $x^2 - 2x - 24$ c) $x^2 + 2x - 24$ d) $x^2 + 2x - 3$ e) $x^2 + x - 30$ f) $x^2 - 3x - 10$

Copyright @ by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Factoring Polynomial Expressions Page 5

3. Factor where possible.
a)
$$x^2 + 10x + 16$$
 b) $x^2 - 11x + 18$ c) $x^2 - 2x - 8$ d) $x^2 + 3x - 18$
e) $x^2 - 4x + 12$ f) $x^2 - 4x - 12$ g) $x^2 - 10x + 25$ h) $x^2 + x - 20$
i) $m^2 + 21m + 38$ j) $a^2 - 17a + 42$ k) $p^2 - 10p - 9$ l) $p^2 - 9p - 10$

4. Factor. **a)** $-x^2 - 7x - 12$ **b)** $4x^2 - 28x - 32$ **c)** $5x^2 - 20x + 15$

d)
$$-2a^2 + 2a + 220$$
 e) $b^2x^2 - 4b^2x - 45b^2$ **f**) $2x^3 + 2x^2 - 40x$

5. Consider the following in which the each letter represents a whole number. $x^2 + 4x - 5 = (x + A)(x - O)$ $x^2 - 3x - 54 = (x - E)(x + I)$

$$x^{3} + 2x^{2} - 8x = x(x - Y)(x + P) \qquad \qquad 3x^{2} - 48x + 192 = T(x - R)^{2}$$

$$-5x^2 + 20x + 105 = -5(x+T)(x-H)$$

Determine the value of each letter and hence name the fictional character represented by the following code.

Copyright © by Absolute Value Publications. This book is **NOT** covered by the Cancopy agreement.

Factoring Polynomial Expressions Page 7

6. Factor. **a)** $x^2 + 18xy + 45y^2$ **b)** $x^2 + 10xy - 24y^2$ **c)** $a^2 - 12ab + 36b^2$ **d**) $p^2 - 12pq + 11q^2$ **e**) $x^2 + xy - 72y^2$ **f**) $x^2 - 54xy - 112y^2$ 7. Factor completely. **a)** $4x^2 - 80xy + 144y^2$ **b)** $3b^2 - 15bv - 72v^2$ **c)** $2c^2 + 66cd - 140d^2$

Multiple 8. When factored, the trinomials $x^2 - 10x + 21$ and $x^2 - 4x - 21$ have one binomial factor in common. This factor is in common. This factor is

А.	<i>x</i> – 7	В.	<i>x</i> + 7
C.	x - 3	D.	<i>x</i> + 3

9. One factor of $-m^3 - m^2 + 6m$ is A. m-2B. m+2C. m-3D. m-6

10. One factor of $3x^2 - 6xy - 9y^2$ is **A.** 3*x* **B.** x + 2y**C.** x + 3y**D.** x + y

11. The expression $x^2 - 4x + c$ cannot be factored if c has the value

A. –5 **B.** 0 **C.** 4 **D.** 5

Answer Key

1. a)	-2, 10 b) $-10, 2$	c) $-5, 4$	d) $-7, 10$ e) $-4, -$	7 f) -4, 4
2. a)	(x-5)(x+3) b)	(x-6)(x+4)	c) $(x+6)(x-4)$	d) $(x+3)(x-1)$
e)	(x+6)(x-5) f)	(x-5)(x+2)		
3. a)	(x+8)(x+2) b)	(x - 9)(x - 2)	c) $(x+2)(x-4)$	d) $(x+6)(x-3)$
e)	not possible f)	(x-6)(x+2)	g) $(x-5)^2$	h) $(x+5)(x-4)$
i)	(m+2)(m+19) j)	(a - 14)(a - 3)	k) not possible	l) $(p-10)(p+1)$
4.a)	-(x+3)(x+4) b) $4(x+4)$	(-8)(x+1)	c) $5(x-3)(x-1)$ d)	-2(a-11)(a+10)
e)	$b^2(x-9)(x+5)$ f) 2.	x(x+5)(x-4)	5. HARRY POTTH	ER
6. a)	(x + 15y)(x + 3y) b)	(x - 2y)(x + 12y)	(<i>a</i>) c) $(a-6b)^2$ d)	(p-q)(p-11q)
e)	(x - 8y)(x + 9y) f)	(x+2y)(x-5)	6y)	
7.a)	4(x-18y)(x-2y) b) $3(b-8v)(b+$	3v) c) $2(c+35d)(c-$	2 <i>d</i>)
8. A	9. A 10. D	11. D		

Copyright @ by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.