Polynomial Operations Lesson \#6: Problem Solving with Polynomial Products

Bentwood boxes are containers traditionally constructed by the Northwest Coast Aboriginal peoples. An artist typically uses a single piece of wood that is bent to form a box in the shape of a rectangular prism using only steam and strategically placed grooves. Traditional uses of these boxes range from food and clothing storage to burials.

The images below are examples of a bentwood box and can be referenced at the following website https://www.rrncommunity.org/items/3442\#

Additional information on Bentwood art can be found at https://en.wikipedia.org/wiki/Bentwood

A Haida artist constructs a bentwood box with the following dimensions: length $(5 x-2) \mathrm{cm}$, width $(3 x-1) \mathrm{cm}$, and height $(3 x+1) \mathrm{cm}$.
a) Write and simplify an expression for the volume of the bentwood box in cm^{3}.

75. Write and simplify an expression for the surface area of the bentwood box in cm^{2}.
c) If $x=20$, calculate the volume and surface area of the bentwood box.

$$
\begin{aligned}
& =45\left(200^{3}-18\left(20^{2}\right)-5(20)+2\right. \\
& =352702 \mathrm{~cm}^{3}
\end{aligned}
$$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

166 Polynomial Operations Lesson \#6: Problem Solving with Polynomial Products

a) The area of the given figure can be written as a trinomial in the form $a x^{2}+b x+c$. Determine the values of a, b, and c.

Complete Assignment Questions \#1- \#15

\# 1,5,9, 10

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Assignment

1. In each case, the figures consist of a series of horizontal and vertical lines.

The area of each figure can be written as a trinomial in the form $a x^{2}+b x+c$.
Determine the values of a, b, and c, and calculate the area when $x=2.4$.

b)

2. The figure consists of a rectangle within a rectangle.
a) Determine a simplified expression of the shaded area in terms of a and b.

b) Calculate the area when $a=2.8$ and $b=-3.5$.

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.
3. a) Determine the area of the figure in the form $a y^{2}+b y+c$.

b) Determine the area of the figure when $y=-2$.
4. A square metal plate of side 25 cm is heated so that each side increases in length by $x \mathrm{~cm}$.
a) Write and simplify an expression for the area of the heated plate.
b) Write and simplify an expression for the increase in area of the plate.
c) If $x=0.2$, calculate the increase in area.
5. A square garden with a side length of $(3 x+1) \mathrm{m}$ contains two square flower beds each with a side length of $(x+1) \mathrm{m}$. The remainder of the garden is grass.
a) Draw a diagram to illustrate this information.
b) Write and simplify an expression for the area of grass in the garden.
6. A metal washer has internal radius $r \mathrm{~mm}$ and width $w \mathrm{~mm}$ as shown.
a) Write an expression for the outer radius of the washer.
b) Show that the area of the washer, $A \mathrm{~mm}^{2}$, is given by $A=2 \pi r w+\pi w^{2}$.

7. Solve the following equations where the variable is in the set of real numbers.
a) $(3 x-1)(x-1)=3 x(x+1)$
b) $(y+2)^{2}=y^{2}+2$
c) $t^{2}-(t-9)^{2}=9$
d) $2 a^{2}-(a-3)^{2}=(a+2)(a-1)$
8. The hypotenuse of a right triangle is $(5 x-6) \mathrm{cm}$ long and the lengths of the other two sides are $(4 x-7) \mathrm{cm}$ and $(3 x-1) \mathrm{cm}$. Form an equation and solve it to determine the value of x and the lengths of the three sides of the triangle.
9. Consider a set of rectangles with sides $(4 a-3) \mathrm{cm}$ and $(2 a+7) \mathrm{cm}$.
a) Write and simplify an expression in a for the area of one of these rectangles.
b) If one of these rectangles has a perimeter of 50 cm , determine the length and width of this rectangle.
c) If another of these rectangles is a square, determine the length of each side.
10. A rectangle has length $\left(x^{2}+4 x-1\right) \mathrm{cm}$ and width $(3 x-2) \mathrm{cm}$.
a) Write and simplify an expression for the area of the rectangle in cm^{2}.
b) If $x=2.5$, calculate the area of the rectangle.
11. Dice for a children's board game are cubes with an edge length of $(3 x-2) \mathrm{mm}$.
a) Write and simplify an expression for the volume of a die in mm^{3}.
b) The manufacturer packages dice in cubic containers containing 64 dice. Determine the volume of the container in cm^{3} if $x=4$.
12. A rectangular garden with length $(8-3 a) \mathrm{m}$ and width $(a+8) \mathrm{m}$ contains three square flower beds, each with a side length of $(2 a+5) \mathrm{m}$. The remainder of the garden is grass.
a) Draw a diagram to illustrate this information.
b) Write and simplify an expression for the area of grass in the garden.
c) Determine the area of grass if $a=-1.5$.

Multiple 13. A box is in the shape of a rectangular prism. The length of the box is $y \mathrm{~cm}$. The width is 2 cm less than the length, and the height is 2 cm more than the length. If the volume of the box can be written in the form $V=a y^{3}+b y^{2}+c y+d$ where a, b, c, and d are integers, then how many of the parameters a, b, c, and d are equal to zero?
A. 0
B. 1
C. 2
D. 3
14. The square and the rectangle in the diagram are equal in area.
The value of x, to the nearest tenth, is \qquad -.

(Record your answer in the numerical response box from left to right)
15. The diagram shows the lengths of the sides of right triangle $A B C$.

The perimeter (to the nearest tenth of a cm) of triangle $A B C$ is \qquad -.

(Record your answer in the numerical response box from left to right)

Answer Key

1. a) $a=1, b=9, c=-12$, area $=15.36$ units $^{2} \quad$ b) $a=5, b=7, c=-2$, area $=43.6$ units 2
2. a) $3 a^{2}-2 a b-b^{2}$ b) 30.87 units $^{2} \quad$ 3. a) $30-y-2 y^{2} \quad$ b) 24 units 2
3. a) $625+50 x+x^{2} \mathrm{~cm}^{2} \quad$ b) $50 x+x^{2} \mathrm{~cm}^{2} \quad$ c) $10.04 \mathrm{~cm}^{2}$
4. b) $(3 x+1)^{2}-2(x+1)^{2}=7 x^{2}+2 x-1 \mathrm{~m}^{2} \quad$ 6. a) $(r+w) m m$
5. a) $\frac{1}{7}$ b) $-\frac{1}{2} \quad$ c) $5 \quad$ d) $\frac{7}{5}$
6. $(5 x-6)^{2}=(4 x-7)^{2}+(3 x-1)^{2} ; \quad x=7 ; \quad 29 \mathrm{~cm}, 21 \mathrm{~cm} 20 \mathrm{~cm}$
7. a) $(4 a-3)(2 a+7)=8 a^{2}+22 a-21 \mathrm{~cm}^{2} \quad$ b) 11 cm by $14 \mathrm{~cm} \quad$ c) 17 cm
10.a) $\left(x^{2}+4 x-1\right)(3 x-2)=3 x^{3}+10 x^{2}-11 x+2 \mathrm{~cm}^{2} \quad$ b) $83.875 \mathrm{~cm}^{2}$
11.a) $(3 x-2)^{3}=27 x^{3}-54 x^{2}+36 x-8 \mathrm{~mm}^{3} \quad$ b) $64 \mathrm{~cm}^{3}$
12.b) $-15 a^{2}-76 a-11 \mathrm{~m}^{2} \quad$ c) $69.25 \mathrm{~m}^{2}$
c) volume $=2574 \mathrm{~cm}^{3}$, surface area $=1150 \mathrm{~cm}^{2}$
8. C
9.

15.

[^0]
[^0]: Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

