Lesson 1: The Equation of a Line in Slope y-intercept Form y = mx + b

Friday, August 31, 2018 2:33 AM

Equations of Linear Relations Lesson #1: The Equation of a Line in Slope y-intercept Form $\rightarrow y = mx + b$

Overview of Unit

In this unit we express the equation of a linear relation in three different forms: slope *y*-intercept form, point-slope form, and general form. We relate linear relations expressed in these forms to their graphs.

We also determine the linear relation given: a graph, a table of data points, a point and the slope, two points, a point and the equation of a parallel or perpendicular line.

Investigating the Graphs of Linear and Non-Linear Relations

a) The equations of the graphs of some relations are given. In each case, use a graphing calculator to sketch the graph of the relation and make a rough sketch of the graph on the grid provided. Do not list any *x*- or *y*-intercepts.

b) List the equations of the graphs as linear or non-linear.

LINEAR:

NON-LINEAR:

c) Compare the lists. Write a rule from the equation which can be used to determine whether the graph is a straight line or not.

Linear Equation

A **linear equation** is an equation of the form y = mx + b, where $m, b \in R$. The graph of a linear equation is a straight line.

Investigating m and b in the equation y = mx + b

Part One

Jenine used a graphing calculator to sketch the graph of the linear equation $y = \frac{2}{3}x - 1$.

Her sketch is shown on the grid.

- **b**) Compare the values found in **a**) with the coefficient of x and the constant term in the equation $y = \frac{2}{3}x 1$.
- **c)** Jenine sketched the graphs of two more linear equations. Use the grid to determine the slope and *y*-intercept of each graph.

equation

$$y = 2x + 1$$

$$y = -\frac{5}{2}x - 3$$
 $y = -\frac{5}{2}$
 $y = -\frac{5}{2}$
 $y = -\frac{5}{2}$
 $y = -\frac{5}{2}$

d) Make a conjecture about the slope and y-intercept of the graph of the linear equation y = mx + b y-intercept

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

m=slope

Hashib used a graphing calculator to graph the linear equation 2y = 5x + 8. The graph is shown on the grid.

a) Use the sketch to determine the slope and y-intercept of the graph of

b) Explain why, in this case, the slope is not 5 (the coefficient of x) and the y-intercept is not 8 (the constant term).

Slope v-intercept Form of the Equation of a Line $\rightarrow y = mx + b$

The graph of an equation in the form y = mx + b (or a function in the form f(x) = mx + b) is a straight line with slope m and y-intercept b.

The equation y = mx + b is known as the **slope y-intercept form** of the equation of a line.

The graph of an equation in this form can be drawn without making a table of values.

Determine the slope and y-intercept of the graph of each linear equation listed below: m=slape b= y-int

a)
$$y = 3x + 2$$

 $m = 3$ (slope)
 $b = 2$ (y-int)

b)
$$y = 7 - \frac{2}{3}x$$

Slope: $-\frac{2}{3}$ (in front of $\frac{6y}{6} = \frac{8x}{6} + \frac{1}{6}$
 $y = \frac{8x}{6} + \frac{1}{6}$

Graphing an Equation of the Form y = mx + b

In this section, we will look at two ways of sketching the graph of a linear equation without using a graphing calculator or a table of values.

Consider the equation y = 2x - 5.

- **b**) Mark the *y*-intercept on the grid.
- c) Use the y-intercept and the formula slope = $\frac{\text{rise}}{\text{run}}$ to mark three other points on the grid.

 Join the points together, and extend the line

Verify the graph using a graphing calculator.

Consider the equation $y = \frac{2}{3}x - 6$.

a) State the *y*-intercept.

b) Determine the *x*-intercept algebraically.

$$x-int$$
, $y=0$
 $0 = \frac{1}{3}x - \frac{1}{6}$ *solve for x
 $\frac{3}{3}6 = \frac{3}{3}x = \frac{3}{3}$ $x = \frac{18}{3} = 9$

c) Mark the x- and y-intercepts on the grid. Join the points together, and extend the line.

Complete Assignment Questions #1 - #14

2ace, 3ac, 4,5

Assignment

1. Each equation represents a relation.

a)
$$y = 6x + 1$$

b)
$$y = x^2$$

c)
$$y = 3x^4 + 5$$

a)
$$y = 6x + 1$$
 b) $y = x^2$ **c)** $y = 3x^4 + 5$ **d)** $y = -\frac{1}{4}x - 8$

e)
$$y = 1 - x$$

e)
$$y = 1 - x$$
 f) $y = \frac{2}{1 - x}$ **g**) $y = 4x$ **h**) $y = 4^x$

$$\mathbf{g}) \quad y = 4x$$

h)
$$y = 4^x$$

Without sketching the graph of the relation, list the letters a) through h) as linear or non-linear

LINEAR:

NON-LINEAR:

2. State the slope and y-intercept of the graph of each linear equation.

a)
$$y = 7x - 2$$

b)
$$y = \frac{4}{3}x + 3$$

a)
$$y = 7x - 2$$
 b) $y = \frac{4}{3}x + 3$ **c)** $y = 6 - \frac{1}{6}x$ **d)** $4y = 6x + 8$ **e)** $y = ax + b$

d)
$$4y = 6x + 8$$

$$\mathbf{e)} \ \ y = ax + b$$

3. Write the equation of each line with the given slope and *y*-intercept.

$$\mathbf{a}$$
) slope = 4

b) slope =
$$\frac{1}{5}$$
 c) slope = -3 **d**) slope = m

c) slope =
$$-3$$

d) slope =
$$n$$

$$y$$
-intercept = -9

y-intercept =
$$-9$$
 y-intercept = $\frac{1}{2}$ y-intercept = 0 y-intercept = b

$$y$$
-intercept = 0

$$y$$
-intercept = b

4. For each line, state the slope and the y-intercept. Graph the equation without using a graphing calculator. **a)** $y = \frac{1}{4}x + 2$ **b)** y = -x - 1 **c)** $y = -\frac{4}{3}x$ **d)** y = 5

a)
$$y = \frac{1}{4}x + 2$$

b)
$$y = -x - 1$$

c)
$$y = -\frac{4}{3}x$$

d)
$$y = 5$$

5. For each line, state the y-intercept. Determine the x-intercept algebraically, and graph the equation without using a graphing calculator.

a)
$$y = 2x + 6$$

b)
$$y = -x - 4$$

c)
$$y = \frac{6}{7}x - 6$$

c)
$$y = \frac{6}{7}x - 6$$
 d) $y = -\frac{1}{2}x + 1$

- **6.** Explain why the linear equation y = 5x can be graphed using the method in question 4 but not by the method in question 5.
- 7. Consider the graph of the function with equation y = x.
 - a) State the values of m and b.
 - **b**) Determine the x- and y-intercepts.
 - c) Sketch the graph on the grid provided without using a graphing calculator.
 - **d**) Determine the domain and range of the function.

e) Use a graphing calculator to graph the line y = -x, and sketch the graph on the grid.

8. Use a graphing calculator to sketch the graph of each of the following linear equations. Complete the table giving the *x*-intercept to the nearest hundredth.

i)
$$y = 7x - 8$$

iii)
$$y = 75 - \frac{5}{3}x$$

slope	
x-intercept	
y-intercept	

slope	
<i>x</i> -intercept	
y-intercept	

slope	
x-intercept	
y-intercept	

Graphing Window which includes both intercepts:

Graphing Window
which includes
both intercepts:

Graphing Window
which includes
both intercepts:

WINDOW	
Xmin=	
Xmax=	
Xsçl=	
Ymin=	
Ymax=	
Yscl=	
Xres=1	

MINDOM	
Xmin=	
Xmax=	
Xsçl=	
Ymin=	
Ymax=	
Yscl=	
Xres=1∎	

Choice

Multiple 9. Which of the following does not represent the equation of a straight line?

$$\mathbf{A.} \quad y = 3x$$

B.
$$y = 11 - 3x$$

$$\mathbf{C.} \quad y = \frac{x}{3}$$

- D. All of the above represent the equation of a straight line.
- Which of the following statements is false for the line $y = -\frac{1}{2}x + 1$?
 - A. The graph of the line falls from left to right.
 - B. The *x*-intercept is 2.
 - C. The graph passes through the point (8, -3).
 - The line is perpendicular to the line y = -2x + 4. D.

- 11. Which of the following statements is true for the line $2y = \frac{1}{4}x + 6$?
 - **A.** The x-intercept is 24.
 - **B.** The *y*-intercept is 6.
 - C. The slope is $\frac{1}{8}$.
 - **D.** The graph passes through the point (-4, 5).
- 12. The lines y = ax, y = bx, and y = cx are shown. Which of the following statements is true?

B.
$$a < c < b$$

C.
$$c < a < b$$

D.
$$c < b < a$$

Use the following information to answer questions 13 and 14.

Consider the line with equation y = 3x + 5. The line intersects the x-axis at P and the y-axis at Q. Triangle POQ is formed where O is the origin.

13. The area of $\triangle POQ$, in square units, to the nearest tenth, is _____.

(Record your answer in the numerical response box from left to right)

14. To the nearest tenth, the perimeter of $\triangle POQ$ is _____.

(Record your answer in the numerical response box from left to right)

Answer Key

1. LINEAR a), d), e), g). NON-LINEAR b), c), f), h).

2. a) slope = 7, y-int =
$$-2$$

b) slope =
$$\frac{4}{3}$$
, y-int = 3

c) slope =
$$-\frac{1}{6}$$
, y-int = 6

a) slope =
$$7$$
, y-int = 2
b) slope = $\frac{3}{2}$, y-int = 2
c) slope = $\frac{1}{6}$, y-int = 2
d) slope = $\frac{3}{2}$, y-int = 2
e) slope = a , y-int = b

e) slope =
$$a$$
, y -int = b

3. a)
$$y = 4x - 9$$
 b) $y = \frac{1}{5}x + \frac{1}{2}$ c) $y = -3x$ d) $y = mx + b$

b)
$$y = \frac{1}{5}x + \frac{1}{2}$$

$$\mathbf{c}) \quad \mathbf{v} = -3x$$

d)
$$v = mx + b$$

4. a) slope =
$$\frac{1}{4}$$
, y-int = 2

b) slope =
$$-1$$
, y-int = -1

c) slope =
$$-\frac{4}{3}$$
, y-int = 0

6. The method in #4 needs a point and a slope. We have point (0,0) and slope = 5. The method in #5 needs two points to be joined. Since the x- and y-intercepts are the same point, the line cannot be drawn.

7. a)
$$m = 1, b = 0$$

7. a)
$$m = 1, b = 0$$
 b) x -int = 0 and y -int = 0. d) $D = x \in R$ $R = y \in R$

$$\mathbf{d}) \quad D = x \in R \quad R = y \in R$$

i)
$$y = 7x - 8$$

slope	7
x-intercept	1.14
y-intercept	- 8

slope	-31
x-intercept	-1.61
y-intercept	- 25

slope	- 5/3
x-intercept	45
y-intercept	75

Graphing Window which includes both intercepts:

Graphing Window which includes both intercepts:

Graphing Window which includes both intercepts:

WINDOW	
Xmin= -10	
Xmax= 60	
Xscl= 10	
Ymin= -20	
Ymax= 100	
Yscl= 10	
Xres=1∎	

9. D

10. D

11. C

12. B

13. 2 14. 1

398	Equations			 3	1 7	