Lesson 3: Slope of a Line Segment
Friday, August 31, $2018 \quad$ 2:41 AM

Characteristics of Linear Relations Page 1

Characteristics of Linear Relations Lesson \#3: Slope of a Line Segment

A trucker driving up a hill with a heavy load may be concerned with the steepness of the hill. When building a roof, a builder may be concerned with the steepness (or pitch) of the roof. A skier going down a hill may be concerned with the steepness of the ski hill.
In mathematics, the term slope is used to describe the steepness of a line segment.

Slope of a Line Segment

The slope of a line segment is a measure of the steepness of the line segment.
It is the ratio of rise (the change in vertical height between the endpoints) over run (the change in horizontal length between the endpoints).

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

$$
t \quad \uparrow
$$

- the rise is POSITIVE if we count UP, and NEGATIVE if we count DOWN.
- the run is POSITIVE if we count RIGHT, and NEGATIVE if we count LEFT. \rightarrow

Each line segment on the grid has endpoints with integer coordinates. Complete the table below.

Line Segment	Rise	Run	Slope $=\frac{\text { Rise }}{\text { Run }}$
$A B$	2	7	$\frac{2}{7}$
$C D$	$-5 \downarrow$	$-4 \leftarrow$	$\frac{-5}{-4}=\frac{5}{4}$
$E F$	-5	3	$\frac{-5}{3}$

Characteristics of Linear Relations Page 3

Investigation \#I

a) Complete the chart. Write the slopes in simplest form.

Line Segment	Rise	Run	Slope $=\frac{\text { Rise }}{\text { Run }}$
$A B$	2	3	$\frac{2}{3}$
$A C$	8	12	$\frac{8}{12}=\frac{2}{3}$
$A D$	10	15	$\frac{10}{15}=\frac{2}{3}$
$B C$	6	9	$\frac{6}{9}=2 / 3$

b) How are the slopes of the line segments related?

They are the same

Slope of a Line

The slopes of all line segments on a line are equal.
The slope of a line representing the graph of a linear relation can be found using

$$
\text { slope }=\frac{\text { rise }}{\text { run }} \text { for any two points on the line. }
$$

Investigation \#2

Slopes of Horizontal and Vertical Line Segments
Consider the line segments in Grid 1 and Grid 2 below.

Grid 1

Grid 2

a) Determine the slopes of all the line segments in Grid 1 .
b) Determine the slopes of all the line segments in Grid 2.
c) Complete the following statements.

- Horizontal line segments have a slope of zero
- Vertical line segments have an undefined slope.

Characteristics of Linear Relations Page 5

Investigation \#3

a) Each line on the grids passes through at least two points with integer coordinates. Calculate the slope of each of the lines.

Remember on a Cartesian Plane

- the rise is POSITIVE if we count UP, and NEGATIVE if we count DOWN
- the run is POSITIVE if we count RIGHT, and NEGATIVE if we count LEFT

Grid 1

Table For Grid 1

Line	Slope
1	$\frac{2}{3}$
2	$\frac{5}{2}$
3	$\frac{1}{3}$

Grid 2

Table For Grid 2

b) Compare the slopes of:

- Line 1 and Line 4
- Line 2 and Line 5
- Line 3 and Line 6
c) Complete the following statements.
- A line which rises from left to right has a
 slope.
- A line which falls from left to right has a \qquad slope.

Complete Assignment Questions \#1 and \#2

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Characteristics of Linear Relations Page 7

A grid has been superimposed on the sketch.
a) Estimate the pitch (slope) of the roof to the right of the worker's head.

b) Could the grid be used to estimate the pitch of the roof the worker is standing on? Explain.

Draw a line segment on the grid which passes through the point $(-4,2)$ and has a slope of Θ_{3}^{2}. The line segment must be long enough to cross both the x-axis and the y-axis.
Write the coordinates of three other points on the line segment which have integer coordinates.

- pound 2, right 3
- dopa, left 3 - connect -pants

A line segment has a slope of $-\frac{5}{7}$ and a rise of 12. Calculate the run as an exact value.

$$
-\frac{5}{7}=\frac{-5 t}{7 \rightarrow}=\frac{5 t}{-7 t}
$$

Complete Assignment Questions \#3 - \#13

Characteristics of Linear Relations Page 9

Assignment

1. Each line segment on the grid has endpoints with integer coordinates. Complete the table.

Line Segment	Rise	Run	Slope $=\frac{\text { Rise }}{\text { Run }}$
$A B$			
$C D$			
$E F$			
$G H$			

2. Every line on the grid passes through at least two points with integer coordinates. Calculate the slope of each of the lines.
slope of Line 1 :
slope of Line 2 :
slope of Line 3:
slope of Line 4:
slope of Line 5:

slope of Line 6:
3. Draw a line segment on the grid which passes through the point $(-5,-2)$ and has a slope of $\frac{2}{3}$. The line segment must be long enough to cross both the x-axis and the y-axis.

Write the coordinates of three other points on the line segment which have integer coordinates.

360 Characteristics of Linear Relations Lesson \#3: Slope of a Line Segment
4. Repeat question \#3 for line segments with the given slope passing through the given point.
a) slope $=\frac{2}{5},(2,1)$
b) slope $=-\frac{1}{3},(6,-3)$

c) slope $=-\frac{4}{3},(-9,6)$
d) slope $=4,(0,-7)$

e) slope $=-2,(4,-12)$
f) slope $=0,(0,6)$

Characteristics of Linear Relations Page 13
5. P has coordinates $(-1,2)$. Find two positions for point Q so that the slope of $P Q$ is
a) 2
b) -3
c) $\frac{1}{3}$
d) $-\frac{2}{5}$
e) 0
f) undefined
6. Two of three measures are given for rise, run, and slope. Calculate the value of the third measure in each of the following.
a) slope $=\frac{5}{7}$ and run $=49$
b) slope $=-\frac{3}{8}$ and rise $=15$
c) slope $=-\frac{6}{11}$ and run $=33$
d) slope $=\frac{3}{4}$ and rise $=15$
7. A ramp which has been set up by skateboarders has a slope of $\frac{2}{3}$. Calculate the height of the ramp if the it has a base length of 1.5 metres.

Characteristics of Linear Relations Page 15
8. Triangle $A B C$ is isosceles with $A B=A C$ and $B C=6.8 \mathrm{~cm}$. Calculate the area of the triangle if the slope of $A C=-\frac{5}{4}$.

Multiple 9. The slope of $P Q$ is
A. $\frac{3}{4}$
B. $-\frac{3}{4}$
C. $\frac{4}{3}$
D. $-\frac{4}{3}$

10. The point $(-4,0)$ is on a line which has a slope of $-\frac{2}{5}$. The next point with integer coordinates on the line to the right of $(-4,0)$ is
A. $(-9,-2)$
B. $(-9,2)$
C. $(1,-2)$
D. $(-2,-5)$
11. P is a point in quadrant I, Q is a point in quadrant II, R is a point in quadrant III, and S is a point in quadrant IV.

Which one of the following statements must be true?
A. Line segment $P Q$ has a positive slope.
B. Line segment $Q R$ has a positive slope.
C. Line segment $P R$ has a positive slope.
D. Line segment $Q S$ has a positive slope.

Characteristics of Linear Relations Page 17

Use the following information to answer questions \#12 and \#13.

Numerical 12. A beetle starts to climb the pyramid starting from the midpoint of one of the faces.
Response
To the nearest tenth, the slope of the beetle's climb is \qquad _.
(Record your answer in the numerical response box from left to right)

13. A fly starts to climb the pyramid along one of the edges. To the nearest tenth, the slope of the fly's climb is \qquad _.
(Record your answer in the numerical response box from left to right)

Characteristics of Linear Relations Page 19

Answer Key
1.

Line Segment	Rise	Run	Slope $=\frac{\text { Rise }}{\text { Run }}$
$A B$	-7	4	$-7 / 4$
$C D$	3	5	$3 / 5$
$E F$	7	1	$7 / 1=7$
$G H$	0	7	$0 / 7=0$

2. slope of line $1=\frac{1}{2}, \quad$ slope of line $2=-2, \quad$ slope of line $3=-1$ slope of line $4=4, \quad$ slope of line $5=-\frac{3}{4}$, slope of line $6=2$
3. Any three of $(-8,-4),(-2,0),(1,2),(4,4)$

4.

a) $(-8,-3),(-3,-1),(7,3)$
c) $(-6,2),(-3,-2),(0,-6)$
e) Many possible answers including $(2,-8),(0,-4),(-2,0)$
b) Any 3 of $(-9,2),(-6,1),(-3,0)$ d) $(1,-3),(2,1),(3,5)$

$$
(0,-1),(3,-2),(9,-4)
$$

f) Many possible answers including $(1,6),(2,6),(3,6)$
5. Many possible answers, including any two from:
a) $(-3,-2),(-2,0),(0,4),(1,6)$ b) $(-3,8),(-2,5),(0,-1),(1,-4)$,
c) $(2,3),(5,4),(-4,1),(-7,0)$ d) $(-11,6),(-6,4),(4,0),(9,-2)$
e) $(-3,2),(-2,2),(0,2),(1,2)$
f) $(-1,1),(-1,0),(-1,-1),(-1,3)$
6. a) rise $=35$
b) $\mathrm{run}=-40$
c) rise $=-18$
d) $\mathrm{run}=20$
7. 1 metre
8. $14.45 \mathrm{~cm}^{2}$
9. D
10. C
11. C
12.

13.

