Polynomial Operations Lesson \＃2： Multiplying a Polynomial by a Monomial

Using Algebra Tiles

In previous math courses，we learned how to multiply
i）two monomials，and ii）a monomial and a binomial or trinomial．
\square negative
We can use algebra tiles to illustrate the process of multiplying a monomial by a polynomial．

$$
\pi=1
$$

Shaded tiles represent positive quantities and unshaded tiles represent negative quantities．

Complete the diagram to determine the product．

$\pi / 1 /=x^{2}$

Copyright © by Absolute Value Publications．This book is NOT covered by the Cancopy agreement．

Each diagram below illustrates the result of the product of a monomial and a binomial.

a) State the polynomial represented in each of the duagrams.
b) Complete the left side and the top of Diagram 1 and write the polynomial product.
c) Complete Diagram 2 to illustrate and write a different polynomial product than in b).
d) Write each product as a sum or difference of terms.
e) Verify the polynomial products in d) when $x=3$.

Complete Assignment Questions \#1-\#3

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

The Distributive Property

In Class Example \#1 we have shown that:

$$
\overbrace{2(x+1)}=\frac{2 x+2}{3 x+3}, \quad \overbrace{x(x+3)}=\frac{x^{2}+3 x}{\text { and }}, \quad \overbrace{(x-1)(2 x)}^{2 x(x-2)}=2 x^{2}-2 x .
$$

These above are examples of the distributive property

$$
a(b+c)=a b+a c \quad \text { or } \quad(b+c)(a)=b a+c a \Rightarrow a b+a c .
$$

The distributive property can be extended to any number of terms.

Using Numerical Values to Verify the Distributive Property

Consider the expression $-2(3-5)$.
i) Evaluate $-2(3-5)$ by calculating the value inside the brackets first and then multiplying by -2 .
ii) Evaluate $-2(3-5)$ by using the distributive property.
iii)Comment on your results from i) and ii).

Use the distributive property to determine the following products.
a) $4(3 x+1)$
b) $-5\left(2 x^{2}+x-6\right)$
$-10 x^{2}-5 x+30$
$12 x+4$
c) $\left(x^{3}-2\right) x^{2}$
d) $-3 x(7 x-2 y+z)$
$x^{5}-2 x^{2}$
$-21 x^{2}+6 x y-3 x z$

In the example above we have written a product of polynomials as
a sum or difference of terms.
In this process we expanded the polynomial expressions by using the distributive property, $a(b+c)=a b+a c$ and the exponent rule, $x^{a} \times x^{b}=x^{a+b}$.

Expand and simplify.
a) $6=4(8 x+1)$
b) $4(2 x-3)=2(x-6)$
$=6-32 x-4$
$=8 x-12-2 x+12$
$=-32 x+2$
$=6 x$
c) $5 x\left(3 x^{2}-7 x+1\right)-1\left(4 x+3 x^{2}\right)$
$=15 x^{3}-35 x^{2}+5 x-4 x-3 x^{2}$
$=15 x^{3}-38 x^{2}+x$
(1,2)de, 4acegi, 5aregi, 7acegi

Determine a simplified expression for the area of the given shape by
i) adding the areas of two rectangles.

ii) subtracting the areas of two rectangles.

Complete Assignment Questions \#4 - \#11

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Assignment

1. In each case complete the diagram, state the polynomial product in x, and express the

2. In each case state the polynomial product in x which is indicated by the algebra tile diagram. Express the product as a sum or difference of terms.
a)

b)

c)

d)

e)

f)

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.
3. For each of the following:
i) Draw an algebra tile diagram to model the product.
ii) Express the product as a sum or difference of terms.
iii) Verify the polynomial product when $x=4$.
a) $2 x(2 x-1)$
b) $-3 x(2-x)$
4. Expand.
a) $6(7 x-3)$
b) $-4(4 x+9)$
c) $4 x(2 y+8 z)$
d) $-x(x-5 y)$
e) $3(x-2 y+3 z)$
f) $-2 a(b-c+5 d)$
g) $(x+3) 3 x$
h) $2 x(x-5 y+4 z)$
i) $x\left(x-2 x^{2}+3 x^{3}\right)$
j) $\left(2 x^{2}+x-6\right)(-4 x)$
5. Expand and simplify.
a) $3(x+5)-7$
b) $8-2(5 x+11)$
c) $6(x-2)+x$
d) $2(x+3)+4(2 x-1)$
e) $2(x+3)-4(2 x-1)$
f) $-2(x+1)+7(3 x-2)$
g) $5(-x+12)+5(x-8)$
h) $(2-x)-2(2 x-10)$
i) $6(-x+4)-(x-15)$
6. Identify the errors in the following and provide the correct simplification.
a) $3 x(2 x+y)=6 x+3 x y$
b) $x^{2}\left(x^{3}-2 x+7\right)=x^{6}-2 x^{3}+7 x^{2}$
c) $4(x-2)-2(x-3)$ $=4 x-8-2 x-6$ $=2 x-14$
d) $2(2 t-3)-4(t+5)$
e) $5(a+b)-(a+b)$
$=5 a+5 b-a+b$ $=4 a+6 b$
7. Expand and simplify.
a) $2 a(a+3)-4 a(2 a-1)$
b) $4\left(x^{2}+3\right)-\left(2 x^{2}-1\right)$
c) $2(x+3)-x-1$
d) $z\left(z^{3}+3\right)-(3 z+7)$
e) $5(8 x-3 y)+2(4 y+x)$
f) $-2 x\left(x^{4}+3 x^{3}\right)-7 x\left(2 x^{4}-x^{3}\right)$
g) $3 a\left(2 a^{2} b-a b+b^{2}\right)-6 b\left(a^{3}+3 a b-5 b^{2}\right)$
h) $3 x(x-3)-2 x(x-1)+x(2 x-2)$
i) $\left(p^{2}-3 p\right)(4 p)-(3+5 p)\left(-2 p^{2}\right)$
j) $a(b-c)+b(c-a)+c(a-b)$
k) $20 x^{3} y^{3}-4 x^{3} y^{2}(3 x+5 y-x y)$
8. Determine a simplified expression for the area of the given shape.
a)

b) $4 x \begin{aligned} & 2 x+5 \\ & \boxed{y y y} \\ & \\ & \\ & \\ & \\ & \\ & \end{aligned}$

Multiple 9. The algebra tile diagram represents the expansion of:
Choice
A. $2 x(x+3)$
B. $-2 x(x+3)$
C. $2 x(x-3)$
D. $-2 x(x-3)$

10. Which of the following expansions is incorrect?
A. $-2 x^{2}(3 x+2)=-6 x^{3}-4 x^{2}$
B. $-4 x(2-x)=-8 x+4 x^{2}$
C. $-5 x\left(x^{2}-3\right)=-5 x^{3}-15 x$
D. $7 x^{2}\left(x^{2}+3\right)=7 x^{4}+21 x^{2}$

Numerical 11. The expression $2 x(4-3 x)+5 x(2 x-1)-3(4 x+2)$ can be written in the form $a x^{2}+b x+c$. The value of $a+b-c$ is \qquad ـ.
(Record your answer in the numerical response box from left to right)

Answer Key

1. a) $3(2 x+1)=6 x+3$
b) $x(x+2)=x^{2}+2 x$
c) $-2(x-1)=-2 x+2$
d) $(x+1)(x)=x^{2}+x$
e) $-3 x(2-x)=-6 x+3 x^{2}$
2. a) $x(x+1)=x^{2}+x$
d) $x(2 x+1)=2 x^{2}+x$
b) $3(x-1)=3 x-3$
e) $2 x(x-2)=2 x^{2}-4 x$
c) $(x-1)(x)=x^{2}-x$
f) $(x-2)(2 x)=2 x^{2}-4 x$
3. a) i)

b) i)

ii) $-3 x(2-x)=-6 x+3 x^{2}$

> iii)
4. a) $42 x-18$
b) $-16 x-36$ c) $8 x y+32 x z$
d) $-x^{2}+5 x y$
e) $3 x-6 y+9 z$
f) $-2 a b+2 a c-10 a d$
g) $3 x^{2}+9 x$
h) $2 x^{2}-10 x y+8 x z$
i) $x^{2}-2 x^{3}+3 x^{4} \quad$ j) $-8 x^{3}-4 x^{2}+24 x$
5. a) $3 x+8$
b) $-10 x-14$
c) $7 x-12$
d) $10 x+2$
e) $-6 x+10$
f) $19 x-16$
g) 20
h) $-5 x+22$
i) $-7 x+39$
6. a) $3 x(2 x)=6 x^{2}$, not $6 x \cdot 3 x(2 x+y)=6 x^{2}+3 x y$
b) $x^{2}\left(x^{3}\right)=x^{5}$ not x^{6}. $x^{2}\left(x^{3}-2 x+7\right)=x^{5}-2 x^{3}+7 x^{2}$
c) $-2(-3)=6$, not $-6 \cdot 4(x-2)-2(x-3)=4 x-8-2 x+6=2 x-2$
d) The monomials 2 and -4 multiply both terms in the binomials.
$2(2 t-3)-4(t+5)=4 t-6-4 t-20=-26$.
e) The negative multiplies both a and $b .5(a+b)-(a+b)=5 a+5 b-a-b=4 a+4 b$.
7. a) $-6 a^{2}+10 a$
b) $2 x^{2}+13$
f) $-16 x^{5}+x^{4}$
j) 0
c) $x+5$
e) $42 x-7 y$
g) $-3 a^{2} b-15 a b^{2}+30 b^{3}$
d) $z^{4}-7$
i) $14 p^{3}-6 p^{2}$
b) $7 x^{2}+18 x$
9. D
10. C
11.

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

