Polynomial Operations Lesson #2: Multiplying a Polynomial by a Monomial

Using Algebra Tiles

In previous math courses, we learned how to multiply

and ii) a monomial and a binomial or trinomial. i) two monomials,

We can use algebra tiles to illustrate the process of multiplying a monomial by a polynomial.

Shaded tiles represent positive quantities and unshaded tiles represent negative quantities.

Complete the diagram to determine the product.

a)
$$2(x+1) = 2x + 2$$

c)
$$-3(x-1) = -3x + 3$$

$$\mathbf{d}) \quad 2x(x-2) = \mathbf{A} \mathbf{X}^2 - \mathbf{H} \mathbf{X}$$

e)
$$(x-1)(2x) = \partial X^2 - \partial X$$

Each diagram below illustrates the result of the product of a monomial and a binomial.

$$\partial X^{2} - X$$

- a) State the polynomial represented in each of the diagrams.
- **b**) Complete the left side and the top of Diagram 1 and write the polynomial product.
- c) Complete Diagram 2 to illustrate and write a different polynomial product than in b).
- **d**) Write each product as a sum or difference of terms.
- e) Verify the polynomial products in d) when x = 3.

Complete Assignment Questions #1 - #3

The Distributive Property

In Class Example #1 we have shown that:

$$\widehat{2(x+1)} = \underbrace{2x+2}_{3(x-1)}, \quad \widehat{x(x+3)} = \underbrace{x^2+3x}_{2x(x-2)}, \quad \widehat{2x(x-2)} = \underbrace{2x^2-4x}_{2x(x-2)},$$
and $(x-1)(2x) = \underbrace{2x^2-4x}_{2x(x-2)}$.

These above are examples of the **distributive property**

$$a(b+c) = ab + ac$$
 or $(b+c)(a) = ba + ca \implies ab + ac$.

The distributive property can be extended to any number of terms.

Using Numerical Values to Verify the Distributive Property

Consider the expression -2(3-5).

- i) Evaluate -2(3-5) by calculating the value inside the brackets first and then multiplying by -2.
- ii) Evaluate -2(3-5) by using the distributive property.

iii) Comment on your results from i) and ii).

Use the distributive property to determine the following products.

- a) 4(3x + 1)12x+4

b) $-5(2x^2+x-6)$ $-10x^{2}-5x+30$

c)
$$(x^3 - 2)x^2$$

 $\chi^5 - 2\chi^3$

d)
$$-3x(7x-2y+z)$$

 $-21x^2+6xy-3xz$

In the example above we have written a product of polynomials as a sum or difference of terms.

In this process we **expanded** the polynomial expressions by using the distributive property, a(b+c) = ab + ac and the exponent rule, $x^a \times x^b = x^{a+b}$.

138 Polynomial Operations Lesson #2: Multiplying a Polynomial by a Monomial

Expand and simplify.

a)
$$6 = 4(8x + 1)$$

= $6 - 32x - 4$
= $-32x + 2$

$$= 8x - 12 - 2x + 12$$

$$= 6x$$

c)
$$5x(3x^2 - 7x + 1) - (4x + 3x^2)$$

= $15x^3 - 35x^4 + 5x - 4x - 3x^2$
= $15x^3 - 38x^2 + x$

Determine a simplified expression for the area of the given shape by

- i) adding the areas of two rectangles.
- ii) subtracting the areas of two rectangles.

Complete Assignment Questions #4 - #11

Assignment

1. In each case complete the diagram, state the polynomial product in x, and express the product as a sum or difference of terms.

2. In each case state the polynomial product in x which is indicated by the algebra tile diagram. Express the product as a sum or difference of terms.

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

- **3.** For each of the following:
 - i) Draw an algebra tile diagram to model the product.
 - ii) Express the product as a sum or difference of terms.
 - iii) Verify the polynomial product when x = 4.
 - **a**) 2x(2x-1)

b) -3x(2-x)

4. Expand.

a)
$$6(7x-3)$$

a)
$$6(7x-3)$$
 b) $-4(4x+9)$ **c**) $4x(2y+8z)$ **d**) $-x(x-5y)$

c)
$$4x(2y + 8z)$$

$$\mathbf{d}) = r(r - 5v)$$

e)
$$3(x-2y+3z)$$

e)
$$3(x-2y+3z)$$
 f) $-2a(b-c+5d)$ **g**) $(x+3)3x$

g)
$$(x+3)3x$$

h)
$$2x(x-5y+4z)$$

i)
$$x(x-2x^2+3x^3)$$

h)
$$2x(x-5y+4z)$$
 i) $x(x-2x^2+3x^3)$ **j**) $(2x^2+x-6)(-4x)$

5. Expand and simplify.

a)
$$3(x+5)-7$$

a)
$$3(x+5)-7$$
 b) $8-2(5x+11)$ **c**) $6(x-2)+x$

c)
$$6(x-2) + x$$

d)
$$2(x+3) + 4(2x-1)$$

d)
$$2(x+3) + 4(2x-1)$$
 e) $2(x+3) - 4(2x-1)$ **f**) $-2(x+1) + 7(3x-2)$

f)
$$-2(x+1) + 7(3x-2)$$

g)
$$5(-x+12) + 5(x-8)$$
 h) $(2-x) - 2(2x-10)$ **i**) $6(-x+4) - (x-15)$

h)
$$(2-x)-2(2x-10)$$

i)
$$6(-x+4)-(x-15)$$

6. Identify the errors in the following and provide the correct simplification.

a)
$$3x(2x + u) = 6x + 3xu$$

a)
$$3x(2x + y) = 6x + 3xy$$
 b) $x^2(x^3 - 2x + 7) = x^6 - 2x^3 + 7x^2$

c)
$$4(x-2)-2(x-3)$$

 $=4x-8-2x-6$
 $=2x-14$
d) $2(2t-3)-4(t+5)$
 $=4t-3-4t-5$
 $=-8$
e) $5(a+b)-(a+b)$
 $=5a+5b-a+b$
 $=4a+6b$

$$d) 2(2t-3)-4(t+5)$$

$$= 4t-3-4t-5$$

$$= 4t - 3 - 4t - 5$$
 $= 5a + 50$
 $= -8$ $= 4a + 6b$

7. Expand and simplify.

a)
$$2a(a+3) - 4a(2a-1)$$
 b) $4(x^2+3) - (2x^2-1)$ **c)** $2(x+3) - x - 1$

b)
$$4(x^2+3)-(2x^2-1)$$

c)
$$2(x+3)-x-1$$

d)
$$z(z^3 + 3) - (3z + 7)$$
 e) $5(8x - 3y) + 2(4y + x)$

e)
$$5(8x - 3y) + 2(4y + x)$$

$$\mathbf{f)} \quad -2x(x^4 + 3x^3) - 7x(2x^4 - x^3)$$

f)
$$-2x(x^4 + 3x^3) - 7x(2x^4 - x^3)$$
 g) $3a(2a^2b - ab + b^2) - 6b(a^3 + 3ab - 5b^2)$

h)
$$3x(x-3) - 2x(x-1) + x(2x-2)$$

h)
$$3x(x-3) - 2x(x-1) + x(2x-2)$$
 i) $(p^2 - 3p)(4p) - (3 + 5p)(-2p^2)$

j)
$$a(b-c) + b(c-a) + c(a-b)$$

j)
$$a(b-c) + b(c-a) + c(a-b)$$
 k) $20x^3y^3 - 4x^3y^2(3x + 5y - xy)$

8. Determine a simplified expression for the area of the given shape.

Multiple 9. Choice

The algebra tile diagram represents the expansion of:

- **A.** 2x(x+3)
- -2x(x+3)В.
- **C.** 2x(x-3)
- **D.** -2x(x-3)

10. Which of the following expansions is incorrect?

- **A.** $-2x^2(3x+2) = -6x^3 4x^2$
- **B.** $-4x(2-x) = -8x + 4x^2$ **C.** $-5x(x^2-3) = -5x^3 15x$
- **D.** $7x^2(x^2+3) = 7x^4 + 21x^2$

The expression 2x(4-3x) + 5x(2x-1) - 3(4x+2) can be written in the form $ax^2 + bx + c$. The value of a + b - c is _____.

(Record your answer in the numerical response box from left to right)

Answer Key

1. a)
$$3(2x+1) = 6x + 3$$

b)
$$x(x+2) = x^2 + 2x$$

c)
$$-2(x-1) = -2x + 2$$

d)
$$(x+1)(x) = x^2 + x$$

e)
$$-3x(2-x) = -6x + 3x^2$$

c)
$$(x-1)(x) = x^2 - x$$

2. a)
$$x(x+1) = x^2 + x$$

d)
$$x(2x+1) = 2x^2 + x$$

b)
$$3(x-1) = 3x - 3$$

e) $2x(x-2) = 2x^2 - 4x$

$$\mathbf{f)} \quad (x-2)(2x) = 2x^2 - 4x$$

ii)
$$-3x(2-x) = -6x + 3x^2$$

ii)
$$2x(2x-1) = 4x^2 - 2x$$

iii) Left Side Right Side
$$(2 \times 4) ((2 \times 4) - 1) + (4^2) - 2(4)$$

$$= (8) ((7) + 64 - 8)$$

$$= 56 + 64 - 8$$

$$= 56 + 64 - 8$$

iii)	Left Side	Right Side
(-3 x 4) (2 – 4)	$(-6 \times 4) + 3(4)^2$
	= (-12) ((-2)	= -24 + 48
	= 24	= 24

4. a)
$$42x - 18$$

b)
$$-16x - 36$$

c)
$$8xy + 32xz$$

d)
$$-x^2 + 5xy$$

$$3x = 0y + 92$$

b)
$$-16x - 36$$
 c) $8xy + 32xz$ **e**) $3x - 6y + 9z$ **f**) $-2ab + 2ac - 10ad$

g)
$$3x^2 + 9x$$
 h) $2x^2 - 10xy + 8xz$ **i**) $x^2 - 2x^3 + 3x^4$ **j**) $-8x^3 - 4x^2 + 24x$

5. a)
$$3x + 8$$
 d) $10x + 2$

b)
$$-10x - 14$$

e) $-6x + 10$

c)
$$7x - 12$$
 f) $19x - 16$

h)
$$-5x + 22$$

i)
$$-7x + 39$$

6. a)
$$3x(2x) = 6x^2$$
, not $6x$. $3x(2x + y) = 6x^2 + 3xy$

b)
$$x^2(x^3) = x^5$$
 not x^6 . $x^2(x^3 - 2x + 7) = x^5 - 2x^3 + 7x^2$

c)
$$-2(-3) = 6$$
, not -6 . $4(x-2) - 2(x-3) = 4x - 8 - 2x + 6 = 2x - 2$

- d) The monomials 2 and -4 multiply both terms in the binomials. 2(2t-3) - 4(t+5) = 4t - 6 - 4t - 20 = -26.
- e) The negative multiplies both a and b. 5(a+b) (a+b) = 5a + 5b a b = 4a + 4b.

7. **a**)
$$-6a^2 + 10a$$

b)
$$2x^2 + 13$$

c)
$$x + 5$$

d)
$$z^{-} = 7$$

e)
$$42x - 7y$$

i) $14p^3 - 6p^2$

f)
$$-16x^5 + x^4$$
 j) 0

c)
$$x + 5$$

g) $-3a^2b - 15ab^2 + 30b^3$
k) $-12x^4y^2 + 4x^4y^3$

h)
$$3x^2 - 9x$$

b)
$$7x^2 + 18x$$
 9. D **10.** C

8. a) $14a^2 + 2a$

11.