Lesson 5: Integral Exponents

Friday, August 31, 2018 2:21 AM

Prime Factorization and Exponents Lesson #5: Integral Exponents

The Negative Exponent

a) Complete the patterns below.

b) Write the following with positive exponents. i) $10^{107} = \frac{1}{10^7}$ ii) 3^{-5} $\frac{1}{3^5}$

i)
$$10^{-7} = \frac{1}{10^7}$$

ii)
$$3^{-5}$$
 $\frac{1}{3^5}$

iii)
$$a^{-n} = \frac{1}{a^n}$$

Using the Exponent Laws to Define the Negative Exponent

Consider the expression $5^4 \div 5^7$.

- a) Evaluate the expression as an exact value using a calculator.
- **b**) Complete the following to evaluate the expression.

$$5^4 \div 5^7 = \frac{5.5.5.5}{5.5.5.5.5} = \frac{1}{5^3} = \frac{1}{125}$$

c) Use the quotient law to complete the following.

$$5^4 \div 5^7 = 5^{1} = 5^{1} = 5^{1}$$

- **d**) The results in a) to c) are examples of a general rule when a base is raised to a negative exponent. Complete: $a^{-p} = \frac{1}{\sqrt{r}}$
- e) Write the following with positive exponents and evaluate.

$$\mathbf{i}) \quad 2^{-1} = \frac{1}{2} = \boxed{\frac{1}{2}}$$

ii)
$$3^{-2} = \frac{1}{3^2} = \boxed{\frac{1}{9}}$$

iii)
$$4^{-3}$$
 $\frac{1}{4^3} = \frac{1}{64}$

The Negative Exponent in the Denominator

Use the rule for division of fractions to show that $\frac{1}{4^{3}} = \frac{1}{4^{3}}$. Use a calculator to confirm.

$$\frac{1}{4^3} = 64$$

Negative Exponent Law

A base (not including zero) raised to a negative exponent has the following properties:

$$a^{-n} = \frac{1}{a^n}, \ a \neq 0$$
 and $\frac{1}{a^{-n}} = a^n, \ a \neq 0$

$$\frac{1}{a^{-n}} = a^n, \ a \neq 0$$

Simplify, express with positive exponents, and evaluate without using a calculator.

a)
$$4^5 \times 4^{-3}$$

b)
$$3^2 \times 3^{-3}$$

c)
$$\frac{1}{2^{-5}}$$

d)
$$\frac{6^{-7}}{6^{-5}}$$
 e)

$$\begin{array}{c|c}
e & (2^3)^{-1} \\
\hline
 & \frac{1}{2^5} & 6
\end{array}$$

$$3^{3+(-5)} = 3^{-3} = \frac{1}{3^{3}} = 27$$

$$\begin{array}{c|c}
0 & 0 \\
\hline
6^7 & 3 \\
\hline
6^{5-7} & 3 \\
\hline
6^{5-7} & 3 \\
\hline
8
\end{array}$$

Identify the following as true or false.

a)
$$\frac{8^3}{8^{-1}} = 8^4$$

b)
$$\frac{8^3}{4^{-1}} = 2^4$$

c)
$$a^{-3} = \frac{1}{a^3}$$

$$= 0^{3-(-1)}$$
$$= 0^{3+1} = 0^{4}$$

exponent laws

Explain why $2p^{-3} \neq \frac{1}{2p^3}$.

base so only the p is effected by the exponent

$$2p^{-3} = \frac{2}{p^3}$$

a)
$$a^{-4} \times a^{-3}$$

= $Q^{-4+(-3)}$
= Q^{-7}
=

Simplifying a Fractional Base with a Negative Exponent

Consider the expression $\left(\frac{2}{3}\right)^{-4}$.

a) Complete the following
$$\left(\frac{2}{3}\right)^{-4} = \frac{1}{\left(\frac{2}{3}\right)^{\Box}} = \frac{1}{2} = 1 \times 1 = 1 \times 1$$

- **b)** Evaluate $\left(\frac{3}{2}\right)^4$.
- c) Classify the following statement as true or false. $\left(\frac{2}{3}\right)^{-4} = \left(\frac{3}{2}\right)^4$
- **d**) Suggest a quick method for evaluating $\left(\frac{5}{2}\right)^{-3}$ without using a calculator.

In general,
$$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n \quad a, b \neq 0.$$

Complete Assignment Questions #1 - #15

Assignment

- 1. Write the following with positive exponents.

- **a)** x^{-3} **b)** y^{-9} **c)** 4^{-1} **d)** $\frac{1}{a^{-5}}$ **e)** $\frac{1}{6^{-2}}$
- 2. Without using a calculator show that $\frac{3}{5^{-2}} = 75$.
- 3. Simplify, express with positive exponents, and evaluate without using a calculator.

- **a)** $4^3 \times 4^{-4}$ **b)** $3^0 \times 3^{-3}$ **c)** $\frac{1}{7^{-2}}$ **d)** $\frac{10^{-3}}{10}$ **e)** $(3^2)^{-2}$

- **4.** Express with positive exponents.

- **a)** n^2m^{-5} **b)** $c^{-2}x^{-5}$ **c)** $16h^{-1}$ **d)** $\frac{2}{3}b^{-8}$ **e)** $(y^{-4})^{-2}$
- **f**) $\frac{t^{-5}}{4}$ **g**) $\frac{1}{4r^{-9}}$ **h**) $\frac{4}{r^{-9}}$ **i**) $\frac{a^2}{r^{-7}}$ **j**) $\frac{a^{-2}}{r^{-7}}$

- **5.** Evaluate the following without using a calculator. **a)** -3^{-2} **b)** $(-3)^{-2}$ **c)** $-7^2 \cdot 8^{-2}$ **d)** $(-8.3)^0$ **e)** $[-(3.9)^0]^{-2}$

- **6.** Use a calculator to find the exact value of the following.

- **a)** -4^{-4} **b)** $(-7)^{-3}$ **c)** $(0.75)^{-3}$ **d)** $(-0.025)^{-2}$ **e)** $\left(\frac{4}{7}\right)^{-3}$

7. State whether the following are true or false.

a)
$$6x^{-3} = \frac{6}{x^3}$$

a)
$$6x^{-3} = \frac{6}{x^3}$$
 b) $5a^{-4} = \frac{1}{5a^4}$ **c)** $\frac{4}{b^{-6}} = 4b^6$ **d)** $\frac{x^{-3}}{2} = \frac{2}{x^3}$

c)
$$\frac{4}{b^{-6}} = 4b^6$$

d)
$$\frac{x^{-3}}{2} = \frac{2}{x^3}$$

e)
$$\frac{1}{5v^{-1}} = 5y$$

$$\mathbf{f}) \ \frac{1}{\frac{1}{4}p} = \frac{1}{4}p^{-1}$$

$$\mathbf{g}) \ (3x)^5 = \frac{1}{(3x)^{-5}}$$

e)
$$\frac{1}{5y^{-1}} = 5y$$
 f) $\frac{1}{\frac{1}{4}p} = \frac{1}{4}p^{-1}$ g) $(3x)^5 = \frac{1}{(3x)^{-5}}$ h) $\frac{1}{\left(\frac{1}{7}a\right)^{-2}} = 49a^2$

8. Simplify and write the answer with positive exponents.

a)
$$x^{10} \cdot x^{-5}$$

b)
$$m^5 \div m^8$$

c)
$$b^{-1} \cdot b^{-3}$$

b)
$$m^5 \div m^8$$
 c) $b^{-1} \cdot b^{-3}$ **d**) $-w^0 \div w^5$

9. Simplify and write the answer with positive exponents.

a)
$$a^8 \times a^{-10}$$

a)
$$a^8 \times a^{-10}$$
 b) $10x^2 \div 2x^{-1}$ **c)** $\frac{6y^{-6}}{2y^{-4}}$

c)
$$\frac{6y^{-6}}{2y^{-4}}$$

d)
$$\frac{2a^{-5}}{4b^6}$$

e)
$$-7x^{-2}$$

f)
$$-(7x)^{-2}$$

g)
$$(-7x)^{-2}$$

e)
$$-7x^{-2}$$
 f) $-(7x)^{-2}$ **g**) $(-7x)^{-2}$ **h**) $\frac{(-7x)^{-2}}{-7x^{-2}}$

10. Simplify each expression, writing the answer with positive exponents.

a)
$$a^{-3}a^{-3}$$

b)
$$(5b^8b^{-12})(-10b^3b^{-12})$$
 c) $(-7x^3x^{-5})(x^2x^{-3})$

c)
$$(-7x^3x^{-5})(x^2x^{-3})$$

d)
$$(-2a^3)^{-3} \cdot 3a^{12}$$
 e) $\frac{16a^6b^{-3}}{-4a^6b^3}$

$$\mathbf{e)} \quad \frac{16a^6b^{-3}}{-4a^6b^3}$$

$$\mathbf{f)} \ \ (-3a^5b^{-3}c^0)^{-2}$$

Simplify. Write the final answer with positive exponents.

a)
$$\frac{32a^2b^{-4}}{4a^{-8}b^{-2}} \times \frac{-8a^{-2}}{-3b^{-3}}$$

$$\mathbf{b}) \quad \frac{10(p^3q^2r^0)^{-3}}{(8p^{-3}q^5r^3)^{-2}}$$

c)
$$(-2x^5y^3z^8)^{-2}(-2x^2y^{-8}z^{12})^3$$

d)
$$(5a^3b^2)(-2a^{-2}b)^{-3} \div (-5a^8b^{-9})^{-2}$$

Evaluate the following without using a calculator.

$$\mathbf{a)} \ \left(\frac{2}{3}\right)^{-3}$$

a)
$$\left(\frac{2}{3}\right)^{-3}$$
 b) $\left(\frac{1}{5}\right)^{-2}$ **c)** $\left(\frac{8}{5}\right)^{-1}$

$$\mathbf{c)} \ \left(\frac{8}{5}\right)^{-1}$$

$$\mathbf{d)} \left(\frac{3}{2}\right)^{-4}$$

Simplify. Write the final answers with positive exponents. **13.**

$$\mathbf{a)} \left(\frac{c}{d}\right)^{-2}$$

b)
$$\left(\frac{x}{4}\right)^{-3}$$

$$\mathbf{c)} \left(\frac{p^2}{r^4}\right)^{-3}$$

a)
$$\left(\frac{c}{d}\right)^{-3}$$
 b) $\left(\frac{x}{4}\right)^{-3}$ **c)** $\left(\frac{p^2}{r^4}\right)^{-3}$ **d)** $\left(\frac{a^{-2}}{b^{-5}}\right)^{-3}$

e)
$$\left(\frac{-12x^{-3}}{6y^{-8}}\right)^{-1}$$

$$\mathbf{f)} \ \left(\frac{12x^3y^{-1}}{-8x^{-1}y^5}\right)^{-2}$$

- Multiple Choice 14. The value of $\frac{1^{-3} + 3^0}{2^{-1}}$ is
 - **A**. 1
 - В.
 - C. 8
 - D. 12
 - Which of the following statements are true?

i)
$$3a^{-3} = \frac{1}{3a^3}$$

i)
$$3a^{-3} = \frac{1}{3a^3}$$
 ii) $8x^4 \div 4x^7 = \frac{1}{2x^3}$ iii) $\frac{1}{2a} = 2a^{-1}$

iii)
$$\frac{1}{2a} = 2a^{-1}$$

- Α. i) only
- В. ii) only
- C. iii) only
- D. none of the statements are true

Answer Key

1. a)
$$\frac{1}{x^3}$$
 b) $\frac{1}{y^9}$ c) $\frac{1}{4}$ d) a^5 e) 6^2

b)
$$\frac{1}{v^9}$$

c)
$$\frac{1}{4}$$

d)
$$a^5$$

2.
$$\frac{3}{5^{-2}} = 3 \times 5^2 = 3 \times 25 = 75$$

3. a) $\frac{1}{4^1} = \frac{1}{4}$ b) $\frac{1}{3^3} = \frac{1}{27}$ c) $7^2 = 49$ d) $\frac{1}{10^4} = \frac{1}{10\,000}$ e) $\frac{1}{3^4} = \frac{1}{81}$
4. a) $\frac{n^2}{m^5}$ b) $\frac{1}{c^2x^5}$ c) $\frac{16}{h}$ d) $\frac{2}{3b^8}$ e) y^8
f) $\frac{1}{4t^5}$ g) $\frac{x^9}{4}$ h) $4x^9$ i) a^2b^7 j) $\frac{1}{a^2b^7}$
5. a) $-\frac{1}{9}$ b) $\frac{1}{9}$ c) $-\frac{49}{64}$ d) 1 e) 1
6. a) $-\frac{1}{256}$ b) $-\frac{1}{343}$ c) $\frac{64}{27}$ d) 1600 e) $\frac{343}{64}$
7. a) T b) F c) T d) F e) F f) F g) T h) F
8. a) x^5 b) $\frac{1}{m^3}$ c) $\frac{1}{b^4}$ d) $-\frac{1}{w^5}$

3. a)
$$\frac{1}{4^1} = \frac{1}{4}$$

b)
$$\frac{1}{3^3} = \frac{1}{27}$$

c)
$$7^2 = 49$$

$$\mathbf{d)} \quad \frac{1}{10^4} = \frac{1}{10\ 000}$$

e)
$$\frac{1}{3^4} = \frac{1}{81}$$

4. a)
$$\frac{n^2}{m^5}$$

$$\mathbf{b)} \quad \frac{1}{c^2 x^5}$$

$$\mathbf{c)} \quad \frac{16}{h}$$

d)
$$\frac{2}{3b^8}$$

$$\mathbf{f)} \quad \frac{1}{4t^5}$$

$$\mathbf{g}) \quad \frac{x^9}{4}$$

h)
$$4x^9$$

i)
$$a^2b^7$$

$$\mathbf{j}) \quad \frac{1}{a^2b^7}$$

5. a)
$$-\frac{1}{9}$$

b)
$$\frac{1}{9}$$

$$\mathbf{c}$$
) $-\frac{49}{64}$

6. a)
$$-\frac{1}{256}$$

b)
$$-\frac{1}{343}$$

c)
$$\frac{64}{27}$$

e)
$$\frac{343}{64}$$

8. a)
$$x^{5}$$

$$\mathbf{c}$$
) $\frac{1}{2}$

d)
$$-\frac{1}{w^5}$$

9. a)
$$\frac{1}{a^2}$$

b)
$$5x^3$$

c)
$$\frac{3}{y^2}$$

d)
$$\frac{1}{2a^5b^6}$$

e)
$$-\frac{1}{x^2}$$

f)
$$-\frac{1}{49x^2}$$

g)
$$\frac{1}{49x^2}$$

h)
$$-\frac{1}{343}$$

$$a^{6}$$
11.a) $\frac{64}{}a^{8}l$

b)
$$\frac{640q^4r^6}{15}$$

$$c) - \frac{2z^{20}}{4 \cdot 30}$$

d)
$$-\frac{1}{8}a^{38}$$

9. a)
$$\frac{1}{a^2}$$
 b) $5x^3$ c) $\frac{3}{y^2}$ d) $\frac{1}{2a^5b^6}$
e) $-\frac{7}{x^2}$ f) $-\frac{1}{49x^2}$ g) $\frac{1}{49x^2}$ h) $-\frac{1}{343}$
10.a) $\frac{1}{a^6}$ b) $-\frac{50}{b^{13}}$ c) $-\frac{7}{x^3}$ d) $-\frac{3}{8}a^{3x}$ e) $-\frac{4}{b^6}$ f) $\frac{b^6}{9a^{10}}$
11.a) $\frac{64}{3}a^8b$ b) $\frac{640q^4r^6}{p^{15}}$ c) $-\frac{2z^{20}}{x^4y^{30}}$ d) $-\frac{125a^{25}}{8b^{19}}$
12.a) $\frac{27}{8}$ b) 25 c) $\frac{5}{8}$ d) $\frac{16}{81}$
13.a) $\frac{d^3}{c^3}$ b) $\frac{64}{x^3}$ c) $\frac{r^{12}}{p^6}$ d) $\frac{a^6}{b^{15}}$ e) $-\frac{x^3}{2y^8}$ f) $\frac{4y^{12}}{9x^8}$
14. B

$$\frac{3}{12.a}$$

$$p^{13}$$

c)
$$-\frac{2z^{-1}}{x^4y^{3}}$$

d)
$$-\frac{125a}{8b^{19}}$$

13.a)
$$\frac{8}{d^3}$$

b)
$$\frac{64}{x^3}$$

c)
$$\frac{r^{12}}{n^6}$$

d)
$$\frac{a^6}{a^{15}}$$

e)
$$-\frac{x^3}{2y^8}$$

$$f) = \frac{4y^{12}}{9x^8}$$

14.