# Prime Factorization and Exponents Lesson #3: Powers with Whole Number Exponents

In this lesson we review numbers written as powers, and the exponent laws applied to powers with numerical bases and whole number exponents.

We extend the work to consider bases which are variable.

## Exponents

 $x_{1}y_{1}a_{2}$  $3x_{3}x_{3}x_{3}x_{3}=3^{4}$ 

In mathematics, exponents are used as a short way to write repeated multiplication.

The number of small cubes in the diagram can be calculated by the **repeated multiplication**  $2 \times 2 \times 2$ .

This can be written in exponential form as  $2^3$ .

Exponents can also be used with variables.



The volume of the cube to the left can be determined by repeated multiplication  $a \times a \times a$  or in exponential form  $a^3$ .

#### **Powers**

A power is a number written in exponential form.

It consists of a base and an exponent.





State the base and the exponent in each of the following powers.

a)  $4^5$ 

base: 4

h) (-3)6 WSC; -3

c)  $x^y$ 

base: X exponent: L



A number that multiplies a variable is called a coefficient.

In the expression  $7p^3$  the coefficient is 7.

X3-> COEfficient



State the coefficient in each of the of the following.

a)  $8x^2$ 

**b**)  $-3z^{5}$ 

7



Note that written as a repeated multiplication  $7p^3 = 7 \times p \times p \times p$ ,

whereas  $(7p)^3 = 7p \times 7p \times 7p = 7 \times p \times 7 \times p \times 7 \times p = 7 \times 7 \times 7 \times p \times p \times p = 343p^3$ .





Write each of the following as a repeated multiplication.

- a)  $3a^4b$
- c)  $3(ab)^4$

3xaxaxaxaxb

3×ab×ab×ab×ab  $3xa \times axa \times axb \times b \times b \times b$ d)  $(3ab)^4$ 

**b**)  $3a\underline{b}^{4}$ 

3xaxbxbxbxbxb

3abx 3ab x 3ab x 3ab 3x3x3x3xaxaxaxaxaxbxbxbxbxb

#### Evaluating Powers

$$10^3 = 10 \times 10 \times 10 = \bigcirc\bigcirc\bigcirc\bigcirc$$

$$(-6)^2 = (-6) \times (-6) = + 2$$

$$3^4 = 3 \times 3 \times 3 \times 3 = 2$$

$$(-6)^2 = (-6) \times (-6) = +36$$

$$-6^2 = -(6 \times 6) = -36$$

#### The Zero Exponent

Complete the patterns below by adding one more row.

$$10^4 = 10000$$

$$3^4 = 81$$

$$10^3 = 1000$$

$$3^3 = 27$$

$$10^2 = 100$$

$$3^2 = 9$$

$$10^1 = 10$$

$$3^1 = 3$$

$$10^0 =$$

The results above are examples of a general rule when a base is raised to the exponent zero. Complete:  $a^0 = \underline{\hspace{1cm}}$ .



Evaluate the following.

- a)  $6^0$  b)  $(-9)^0$  c)  $-9^0$  d)  $2(6^2)^0$

Complete Assignment Questions #1 - #7

### The Exponent Laws

The exponent laws with whole number exponents and numerical bases were covered in previous math courses.

The chart below extends the exponent laws to bases which are variables.

Complete the table as a review of the exponent laws.

| Numerical Bases                                                                                                        | Variable Bases                                                                                                                                | Exponent Laws                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $8^3 \times 8^2 = (8 \cdot 8 \cdot 8)(8 \cdot 8)$                                                                      | $a^3 \times a^2 = (a \cdot a \cdot a)(a \cdot a)$                                                                                             | Product Law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $=8^5$ or $8^{3+2}$                                                                                                    | $= a^{5} \text{ or } a^{3+2}$                                                                                                                 | $(a^m)(a^n) = \bigcap_{i=1}^{m} m+n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $8^3 \div 8^2 = \frac{8 \cdot 8 \cdot 8}{8 \cdot 8}$                                                                   | $a^3 \div a^2 = \frac{a \cdot a \cdot a}{a \cdot a}$                                                                                          | Quotient Law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $=8^{1} \text{ or } 83^{-2}$                                                                                           | $=a^{1}$ or $a^{3-2}$                                                                                                                         | $a^m + a^n = \frac{a^m}{a^n} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                        |                                                                                                                                               | $(a \neq 0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $(8 \cdot 7)^{3} = (8 \cdot 7)(8 \cdot 7)(8 \cdot 7)$ $= (8 \cdot 8 \cdot 8)(7 \cdot 7 \cdot 7)$ $= 8^{3} \cdot 7^{3}$ | $(a \cdot b)^{3} = (a \cdot b)(a \cdot b)(a \cdot b)$ $= (a \cdot a \cdot a) (b \cdot b)$ $= a^{3}b^{3}$                                      | Power of a Product Law  Distribution  (ab)m = MM MM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                        | $     \left(\frac{a}{b}\right)^{3} = \left(\frac{O}{V}\right)\left(\frac{a}{b}\right)\left(\frac{a}{V}\right) $ $     = \frac{a^{3}}{b^{3}} $ | Power of a Quotient Law $\left(\frac{a}{b}\right)^{n} = \frac{\bigcap^{n}}{\bigcap^{n}}$ $(b \neq 0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $(8^3)^2 = (8^3)(8^3)$                                                                                                 | $(a^3)^2 = (a^3)(a^3)$                                                                                                                        | Power of a Power Law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| = (                                                                                                                    | $= (0.00)(0.00)$ $= a^{6} \text{ or } a^{3\times 2}$                                                                                          | $(a^m)^n = \bigcap_{i=1}^m \bigcap_{j=1}^n \bigcap_{i=1}^m \bigcap_{j=1}^m \bigcap_{j=1}^m \bigcap_{i=1}^m \bigcap_{j=1}^m \bigcap_{j$ |

Prime Factorization and Exponents Lesson #3: Powers with, Whole Number Exponents



Use the exponent laws to simplify and then evaluate.









Use the exponent laws to simplify.

- a)  $(a)^4(a)^3$

 $j) (st)^{6}$  k)  $(2a)^{3}$ 

Complete Assignment Questions #8 - #22

# Assignment



- **a**)  $8^3$

- **b**)  $k^{15}$  **c**)  $2^x$  **d**)  $(-x)^4$



- 2. State the coefficient in each of the following.
  - a)  $5x^{7}$

- **b**)  $-6z^2$  **c**)  $a^3$  **d**)  $\frac{y^3}{4}$  **e**)  $\frac{5y^9}{9}$
- 3. Write each of the following as a repeated multiplication.
- a)  $c^4$  b)  $5x^3$  c)  $(ab)^2$
- **d**)  $(-5)^3$  **e**)  $s^2t$
- f)  $2\left(\frac{5}{4}\right)^3$  g)  $(4a)^3$  h)  $3cd^2$  i)  $3(cd)^2$  j)  $(3cd)^2$