Lesson 6: Probability Involving Permutations and Combinations

Probability Lesson \#6: Probability Involving Permutations and Combinations

Review

Factorial Notation $n!=n(n-1)(n-2)(n-3) \ldots(3)(2)(1)$, where $n \in W$.
order matters
${ }_{\text {Permutations }}^{\text {Order matters }}{ }_{n} P_{r}=\frac{n!}{(n-r)!} \quad$ Permutations with Repetitions $\quad \frac{n!}{a!b!c!}$
order doesnt matter
Combinations $\quad{ }_{n} C_{r}=\frac{n!}{(n-r)!r!}=\binom{n}{r}$
${ }^{\text {ex CHOOSE }} \frac{6!}{2!}$

Two cards are selected without replacement from a deck of 52 playing cards.
Determine the probability that both cards are kings using
a) the multiplication law
b) combinations
$\left(\frac{4}{52}\right)$
$\begin{aligned}\left(\frac{3}{51}\right) & =\frac{3}{663} \\ & =\frac{1}{221}\end{aligned}$
$\begin{aligned} \frac{{ }_{4} C_{2}}{{ }_{52} C_{2}}-\frac{\text { outcome lwant }}{\text { all possibilities }} & =\frac{6}{1326} \\ & =\frac{1}{221}\end{aligned}$

In a card game, you are dealt 5 cards from a pack of 52 shuffled cards.
When you look at your 5 cards, what is the probability, expressed in combination notation, that you have
a) four aces? 4 Ace lother
b) four tens and an ace?
$\frac{\left({ }_{4} C_{4}\right)\left({ }_{46} C_{1}\right)}{{ }_{52} C_{5}}$
c) $10, \mathrm{~J}, \mathrm{Q}, \mathrm{K}$, and ace?

Class Ex. \#3

The word COUNTED has been spelled using Scrabble tiles. Two tiles are randomly chosen one at a time and placed in the order in which they were chosen. Determine the probability that the tiles are
a) CO order matters
$P(C O)=\frac{1}{{ }_{7} P_{2}}=\frac{1}{42}$ (ㄱ) (6)
$\begin{aligned} & \text { b) both vowels } \\ & P(\text { both ravels })\end{aligned}=\frac{3^{P_{2}} \leftarrow \text { what you }}{{ }_{7} P_{2}} \leftarrow$ all possibilities

$$
\frac{6}{42}=\sqrt{\frac{1}{7}}\left(\text { or } \frac{(3)}{(Q)}=\frac{6}{42}\right)
$$

[^0]Mike's MP3 player contains 50 songs. If he listens to 10 songs on "random", determine the probability, as a percentage to the nearest hundredth, that the playlist contains
a) Mike's two favourite songs order does not matter

$$
\frac{{ }_{2} C_{2} \cdot{ }_{48} C_{8}}{{ }_{50} C_{10}}=0.0367 \ldots \times 100=3.67 \%
$$

b) one of his two favourite songs at the beginning of the 10 songs and the other at the end

City Council consists of nine men and six women. Three representatives are chosen at random to form an environmental sub-committee.
a) What is the probability that Mayor Jim Milonovich and two women are chosen?
order dues not matter

$$
\frac{{ }_{1} C_{1} \cdot{ }_{6} C_{2}}{15 C_{3}}=\frac{3}{91}
$$

b) What is the probability that two women are chosen if Mayor Jim Milonovich must be on the committee?

$$
\frac{{ }_{6} c_{2}}{14 c_{2}}=\frac{15}{91}
$$

A hacker is attempting to break into a friend's security-protected file. The friend tells the hacker all the numbers that are in the 4-digit PIN but not the order or how many times each digit may be repeated in the PIN.

Determine the probability that the hacker correctly guesses the 4-digit PIN on the first attempt if the friend tells her that the PIN contains
a) the numbers $4,5,6$, and 7

$$
\frac{1}{4!}=
$$

\square
b) only the numbers 4,5 , and 6

c) only the numbers 4 and 5
$\left.4445 \frac{4!}{5!}=4\right\}$
d) only the number 4

4444
Complete Assignment Questions \#1-\#17
Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Assignment

1. A marble is drawn at random from a box containing 10 red, 30 yellow, 20 blue, and 10 pink marbles. State, as an exact fraction, the probability that the marble drawn is:
a) yellow
b) yellow or red
c) not blue
d) green
2. A bag contains 6 blue marbles and 10 yellow marbles. Two marbles are drawn from the bag without replacement. Determine the following using
i) the multiplication law \quad ii) permutations or combinations
a) P (both are blue)
b) P (the first is blue and the second is yellow)
c) P (one is blue and one is yellow)
3. Three prizes are rewarded in a raffle during a halftime show at a school basketball game. Ben, Janelle, Jamie, and 17 other students each have one ticket.
a) If the raffle has a first, second, and third prize, determine the probability, as an exact value, that Ben wins first prize, Janelle wins second prize, and Jamie wins third prize.
b) If the raffle has three identical prizes, determine the probability that Ben, Janelle, and Jamie win the prizes.
4. A bank card personal identification number consists of any four digits. Repeat digits are allowed and the code can start with zero.
What is the probability that a code begins and ends with the digit 5 ?
5. A child randomly selects three toys from a box of nine toys, three of which are defective. Determine the probability that none of the toys selected is defective.
6. In a card game, you are dealt 5 cards from a pack of 52 well shuffled cards. What is the probability, expressed as a percentage to the nearest hundredth, of you having
a) five diamonds?
b) five of the same suit?
c) no red cards?
d) at least one red card?
7. A six digit numeral is represented by the digits $1,2,3,4,5$, and 6 in any order. If one of these numerals is chosen at random, what is the probability that all the digits are in decreasing order?
8. The Athletic Council decides to form a sub-committee of seven council members to look at how funds raised should be spent on sports activities at the school. There are a total of 15 athletic council members, 9 males and 6 females.
What is the probability that the sub-committee will consist of exactly 3 females?
9. There are twelve boys and ten girls in an English 30 class.

A yearbook committee of four is chosen at random.
a) What is the probability, to the nearest hundredth, that Ryan, who is the school president, and three girls are on the committee?
b) If Ryan must be on the committee, what is the probability, to the nearest hundredth, that three girls are chosen?
10. An eccentric millionaire has a secret room behind a bookcase. The bookcase will only swing open if the coloured books on one of the shelves are arranged in the correct order of colour. There are ten books on the shelf: 4 red, 4 blue, and 2 green.
What are the odds in favour of arranging the books correctly on the first attempt if
a) no other information is given?
b) the two green books are at opposite ends?

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.
11. Elizabeth has 30 songs on her MP3 player: 15 in the "Pop" genre, 10 in the "Country" genre, and 5 in the "Alternative" genre. She generates a random playlist of 9 songs. Determine, as a percentage to the nearest tenth, the probability that the playlist
a) contains 6 pop songs and 3 country songs
b) contains exactly 6 pop songs
c) contains 3 songs from each genre
d) starts and ends with a pop song
12. A company's database requires a three-digit access code. Victor remembers the three digits in the code, but not the order in which they are arranged.
a) Determine the probability Victor gains access to the database on the first attempt if
i) all three digits are different
ii) exactly two of the digits are the same
b) An alarm is triggered if an incorrect access code is entered twice in a row. Determine the probability that Victor avoids triggering the alarm if
i) all three digits are different
ii) exactly two of the digits are the same
13. The national government of a country is to form a committee on environmental regulation. There are 83 legislators to choose from: 52 from urban areas and 31 from rural areas.
If 5 legislators are chosen at random, determine the probability, to 3 decimal places, that
a) the Prime Minister and the Opposition Leader are both on the committee
b) exactly 4 urban legislators are on the committee
c) at least one rural legislator is on the committee
d) at least one rural legislator is on the committee, if the urban-based Minister of the Environment must be on the committee.

172 Probability Lesson \#6: Probability Involving Permutations and Combinations

Multiple

Choice
14. Taqana buys two of a total of thirty raffle tickets. There are two winning numbers. The probability that Taqana wins exactly one prize is
A. $\frac{56}{435}$
B. $\frac{28}{435}$
C. $\frac{2}{435}$
D. $\frac{1}{435}$
15. Five DVDs and their corresponding five cases are sitting on a table. As part of a party game, a student is blindfolded and randomly puts a DVD in each case. The probability that all the DVDs are put in the correct cases is
A. $\frac{1}{5}$
B. $\frac{1}{60}$
C. $\frac{1}{120}$
D. $\frac{1}{3125}$
16. Four cards are dealt from a deck of 52 cards. The probability that the cards contain exactly two aces and exactly one king can be represented by
A. $\frac{\left({ }_{4} C_{2} \cdot{ }_{4} C_{1} \cdot{ }_{47} C_{1}\right)}{{ }_{52} C_{4}}$
B. $\frac{\left({ }_{4} C_{2} \cdot{ }_{4} C_{1}\right)}{{ }_{52} C_{4}}$
C. $\frac{\left({ }_{4} C_{2} \cdot{ }_{4} C_{1} \cdot{ }_{44} C_{1}\right)}{{ }_{52} C_{4}}$
D. $\frac{\left({ }_{4} P_{2} \cdot{ }_{4} P_{1} \cdot{ }_{44} P_{1}\right)}{{ }_{52} P_{4}}$

Numerical 17. The letters of the word OKOTOKS are arranged. The probability, to the nearest
Response hundredth, that an arrangement, chosen at random from all possible arrangements, begins and ends with a vowel is \qquad -
(Record your answer in the numerical response box from left to right.)

Answer Key

1. a) $\frac{3}{7}$
b) $\frac{4}{7}$
c) $\frac{5}{7}$
d) 0
2. a) $\frac{1}{8}$
b) $\frac{1}{4}$
c) $\frac{1}{2}$
3. a) $\frac{1}{6840}$
b) $\frac{1}{1140}$
4. $\frac{1}{100}$
5. $\frac{5}{21}$
6. a) 0.05%
b) 0.20%
c) 2.53%
d) 97.47%
7. $\frac{1}{720}$
8. $\frac{56}{143}$
9. a) 0.02
b) 0.09
10.a) 1:3149
b) $1: 69$
11.a) 4.2%
b) 15.9%
c) 3.8%
d) 24.1%
12 .a) i)
$\frac{1}{6}$ ii) $\frac{1}{6}$
b) i) $\frac{1}{3}$ ii) $\frac{1}{3}$
13.a) 0.003
b) 0.289
c) 0.910
d) 0.857
10. A
11. C
12. C

17.	0	.	1

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

[^0]: Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

