

Quadratic Functions Lesson #4: Analyzing the Graph of y = a(x - m)(x - n)

Recall that a quadratic function may be written in two different forms.

 $f(x) = ax^2 + bx + c$, where $a \ne 0$, or $y = ax^2 + bx + c$, where $a \ne 0$. **General Form:**

 $f(x) = a(x-h)^2 + k$, where $a \ne 0$, or $y = a(x-h)^2 + k$, where $a \ne 0$. **Standard Form:** (or Vertex Form)

In this lesson, we introduce a third form, called **Factored Form**.

Factored Form: f(x) = a(x - m)(x - n), where $a \ne 0$, or y = a(x - m)(x - n), where $a \ne 0$.

 $x^{2}+5x+6=(x+3)(x+2)$

Investigation #1 Investigating the Factored Form y = (x - m)(x - n)

Consider the following quadratic functions written in factored form y = (x - m)(x - n).

a) Using a graphing calculator, sketch the graphs of the functions and complete the table.

Function $y = (x - m)(x - n)$	m	n	<i>x</i> -intercepts of Graph	y-intercept of Graph	Axis of Symmetry	
y = (x - 2)(x - 8)	2	8	2,8	mn=16	x=5	> 2+8 mm
y = (x+2)(x-6)	-2	6	-2,6	-12	x=2	
y = (x+2)(x+6)	-2	-6	-2,-6	12	x=-4	
y = x(x - 4)	٥	4	0,4	0	x=2	
y = (x+8)(x-10)						

b) What do you notice?

x-ints are m &n y-ints are mon axis of sym m

m+n *axis of sym is x value of vertex

Summary of Investigation #1

The following observations about the graph of y = (x - m)(x - n) can be made from the previous investigation:

- The *x*-intercepts are m and n.
- The *y*-intercept is *mn*.
- The equation of the axis of symmetry is $x = \frac{m+n}{2}$.

Investigation #2

Investigating the Factored Form y = a(x - m)(x - n)

Consider the following quadratic functions written in factored form y = a(x - m)(x - n).

a) Using a graphing calculator, sketch the graphs of the functions and complete the table.

	Function $y = (x - m)(x - n)$	а	m	n	<i>x</i> -intercepts of Graph	y-intercept of Graph	Shape or U
	y = 2(x - 5)(x - 2)	a	5	Q	5,2	20	υ
	y = 4(x+3)(x-2)						
4	y = 5(x - 10)(x + 3)	5	10	み	10,-3	-150	V
	y = -3x(x+2)	-3	0	っつ	0,-2	0	7
	y = -10(x+1)(x-3)						
	y = -(x - 10)(x + 10)						

- **b)** Complete the following:
 - The x-intercepts are $\mathbf{\underline{M}}$ and $\mathbf{\underline{L}}$.
 - The y-intercept is **a.m.n**
 - If a is positive, the graph opens $\underline{\boldsymbol{\psi}}$ and has a shape like $\boldsymbol{\mathsf{V}}$
 - If a is negative, the graph opens $\underline{\mathbf{dcur}}$ and has a shape like $\widehat{\mathbf{n}}$.

Features of the Graph of y = a(x - m)(x - n)

The following observations about the graph of y = a(x - m)(x - n) can be made from the previous investigations:

- The x-intercepts are m and n.
- The *y*-intercept is *amn*.
- The equation of the axis of symmetry is $x = \frac{m+n}{2}$.
- If a is positive, the graph opens up and has a minimum point.
- If a is negative, the graph opens down and has a maximum point.

Without graphing, state the x-intercepts, the y-intercept, the equation of the axis of symmetry, and the direction of opening of the graphs of the following functions.

a)
$$f(x) = (x + 4)(x - 10)$$

b)
$$g(x) = -2(x+6)(x+9)$$

c)
$$h(x) = -x(x - 20)$$

a)
$$f(x) = (x + 4)(x - 10)$$
 b) $g(x) = -2(x + 6)(x + 9)$ c) $h(x) = -x(x - 20)$

X-int: -4, 10

Y-int: -6,-9

Y-int: -108

Oxis of sym : $-4+10$

X=3

UPT

dawn

c) $h(x) = -x(x - 20)$

X-int: 0, 20

Y-int: 0

X=10

Axis of sym : $-6+-9$

X=10

dawn

A Disguised "a" Value

Graph $y_1 = 2(x-3)(x-7)$ and $y_2 = -2(3-x)(x-7)$ on your graphing calculator.

What do you notice about the graphs?

Expain why the graph of y = -2(3 - x)(x - 7) opens up when it appears that the "a" value is negative.

Write each function in the form y = a(x - m)(x - n) and state the x- and y-intercepts of the graph of the function.

a)
$$y = (1-x)(x-10)$$
 b) $y = -3(4-x)(12-x)$

b)
$$y = -3(4 - x)(12 - x)$$

352 Quadratic Functions Lesson #4: Analyzing the Graph of y = a(x - m)(x - n)

Each of the graphs has an equation of the form y = a(x - m)(x - n) where a, m, and n are integers. Match each equation with its corresponding graph.

Complete Assignment Questions #1 - #8

#134,5 Skill guizzes Tues.

Equation 1: y = 2(x-1)(x+4)

Equation 2: y = (1 + x)(4 - x)

Determining the Equation from the Graph

The graph represents a quadratic function with equation y = a(x - m)(x - n). The *x*- and *y*-intercepts are shown on the graph.

- a) State the values of m and n.
- **b**) Explain how to determine the value of a.
- c) Write the equation of the graph in the form y = a(x m)(x n).
- **d)** Determine the coordinates of the vertex.

e) Write the equation of the graph in standard form $y = a(x - h)^2 + k$.

Determine the coordinates of the vertex of the graph of a quadratic function if the graph passes through the points (-8,0), (2,0), and (0,48).

Complete Assignment Question #9

Assignment

1. Without graphing the functions, complete the table below.

Function $y = (x - m)(x - n)$	x-intercepts of Graph	y-intercept of Graph	Axis of Symmetry	Opening Up or Down
y = (x - 6)(x + 2)				
y = 5(x+4)(x-6)				
y = -2(x+10)(x+4)				
y = -3(x - 7)(x - 2)				
y = -x(x+9)				
y = (x+5)(x+5)				

2. Without graphing the functions, complete the table below.

Function $y = (x - m)(x - n)$	x-intercepts of Graph	y-intercept of Graph	Axis of Symmetry	Opening Up or Down
y = (2 - x)(x - 2)				
y = 3(3 - x)(6 + x)				
y = 2(4 - x)(3 - x)				
y = -3(5+x)(15+x)				

3. Each of the graphs has an equation of the form y = a(x - m)(x - n) where a, m, and n are integers. Match each equation with its corresponding graph.

$$y = (x-5)(x+1)$$

Equation 2:

$$y = -(x-5)(x+1)$$

Equation 3:

$$y = (x+5)(x-1)$$

Equation 4:

$$y = -(x+5)(x-1)$$

Equation 5:

$$y = (5 - x)(x + 1)$$

Equation 6:

$$y = 2(x+5)(x-1)$$

Equation 7:

$$y = -2(x+5)(x-1)$$

Equation 8:

$$y = 2(5 + x)(1 - x)$$

- **4.** The graph represents a quadratic function with equation y = a(x m)(x n). The x- and y-intercepts are shown on the graph.
 - a) State the values of m and n.
 - **b**) Determine the value of *a*.

- **d**) Determine the coordinates of the vertex.
- e) Write the equation of the graph in standard form $y = a(x h)^2 + k$.
- **5.** In each case, determine the equation of the quadratic function whose graphs are shown. Note that all intercepts are integers.

Answer in the form y = a(x - m)(x - n) and in general form $y = ax^2 + bx + c$.

356 Quadratic Functions Lesson #4: Analyzing the Graph of y = a(x - m)(x - n)

6. Determine the equation of the graph of a quadratic function which opens up and has a vertex on the x-axis. Give your answer in the form y = a(x - m)(x - n), in standard form $y = a(x - h)^2 + k$, and in general form $y = ax^2 + bx + c$.

7. The graph of a quadratic function has x-intercepts of -7 and -1, and passes through the point (-4, 36).

Determine the equation of the quadratic function in the form f(x) = a(x - m)(x - n).

Multiple 8
Choice

- The graph of a quadratic function has *x*-intercepts of –7 and 3, and a *y*-intercept of 84. The coordinates of the vertex of the graph are
 - **A.** (2, -36)
 - **B.** (-2, 25)
 - \mathbf{C} . (-2, -100)
 - **D.** (-2, 100)

Quadratic Functions Lesson #4: Analyzing the Graph of y = a(x - m)(x - n) 357

Use the following information to answer the next question.

The quadratic function shown has an equation of the form y = a(x - m)(x - n)where a, m, and n are integers.

Response

Numerical 9. The value of a + m + n is _____.

(Record your answer in the numerical response box from left to right.)

Answer Key

1. See chart below.

Function $y = (x - m)(x - n)$	x-intercepts of Graph	y-intercept of Graph	Axis of Symmetry	Opening Up or Down
y = (x-6)(x+2)	6 and -2	-12	x = 2	ир
y = 5(x+4)(x-6)	-4 and 6	-120	x = 1	ир
y = -2(x+10)(x+4)	-10 and -4	-80	x = -ヲ	down
y = -3(x - 7)(x - 2)	7 and 2	-42	x = 4.5	down
y = -x(x+9)	0 and -9	0	x = -4.5	down
y = (x+5)(x+5)	-5	25	χ = -5	ир

2. See chart below.

Function $y = (x - m)(x - n)$	x-intercepts of Graph	y-intercept of Graph	Axis of Symmetry	Opening Up or Down
y = (2 - x)(x - 2)	2	-4	x = 2	down
y = 3(3 - x)(6 + x)	3 and -6	54	x =-1.5	down
y = 2(4 - x)(3 - x)	4 and 3	24	х = 3.5	ир
y = -3(5+x)(15+x)	-5 and -15	-225	x = -10	down

- **3.** Equation 1: Graph B Equation 2: Graph E Equation 3: Graph A Equation 4: Graph F Equation 5: Graph E Equation 6: Graph C Equation 7: Graph D Equation 8: Graph D
- **4.** a) m = -2 and n = 5 OR m = 5 and n = -2b) -5c) y = -5(x + 2)(x - 5) OR y = -5(x - 5)(x + 2)e) $y = -5(x - 1.5)^2 + 61.25$
- **5.** a) y = (x + 1)(x 2), $y = x^2 x 2$ b) y = -(x + 2)(x - 2), $y = -x^2 + 4$ c) y = -(x - 1)(x - 4), $y = -x^2 + 5x - 4$ d) y = (x + 3)(x - 1), $y = x^2 + 2x - 3$
- **6.** A possible answer is y = (x 8)(x 8), i.e. m and n must be equal. $y = (x 8)^2,$ $y = x^2 16x + 64$
- **7.** f(x) = -4(x+7)(x+1) **8.** D **9.**