Quadratic Functions Lesson #2: Analyzing the Graph of $y = ax^2 + bx + c$

Recall the following from the previous lesson.

A quadratic function is a function of degree 2 which can be written in the form

$$f(x) = ax^2 + bx + c$$
 or $y = ax^2 + bx + c$, where $a, b, c \in R$, and $a \ne 0$.

 $\overline{-1}$

0

2 3

4 5

6

7

12

5

0

0

5

12

The graph of a quadratic function is a **parabola**. **V**

Basic Characteristics of the Graph of a Quadratic Function

- A parabola has a maximum, or maximum point, if the parabola opens down.
- A parabola has a minimum, or minimum point, if the parabola opens up.
- The vertex of a parabola is the maximum or minimum point.
- The maximum or minimum value of a quadratic function is the y-coordinate of the vertex. $(-1)^2$ -6(-1)+5
- 1. Complete the table of values for the quadratic function $y = x^2 - 6x + 5, x \in \mathbb{R}$.
- 2. Plot the points on the grid provided. Connect the points with a smooth curve and extend the graph.
- **3.** Draw a vertical line representing the **axis of symmetry** of the graph.
- **4.** Fill in the blanks or circle the correct alternative below.
 - The graph of the quadratic function $y = x^2 6x + 5$
 - is a parabola. The vertex is (3, -4).
 - The parabola opens (up down) and therefore has a (maximum / minimum) point.
 - The (maximum / minimum) value of the function is ______.
 - The x-intercepts of the graph are _____ and The y-intercept is ______
 - The equation of the axis of symmetry of the graph is $\times 3$
 - The domain of the quadratic function is XER
 - The range of the quadratic function is $y \ge -4$.
- 5. How can the equation of the axis of symmetry of the graph be

Using a Graphing Calculator to Determine a Maximum/Minimum Value

- Verify the calculator window is in standard setting, or ZStandard.
- The equation $y = -x^2 + 5x + 14$ will be used to illustrate the maximum feature.
- 1. Enter the equation into Y_1 , adjust the window to x: [-5, 10, 5] y: [-5, 30, 5] and press

2. Access the CALC menu by entering

then

<u> Sanconarii -</u>

##maximum 5:intersect 6:dy/dx 7:sf(x)dx

4. On the bottom left of the screen the calculator [Y1=-X2+5X+14] will ask you for a LeftBound?. Cursor to the left side of the maximum point

ENTER and press

Select maximum.

Notice the arrow above the cursor.

TRACE

5. On the bottom left of the screen the calculator Y1=-X2+5X+14 will ask you for a RightBound?. Cursor to the right side of the maximum point ENTER and press

Notice the arrow above the cursor.

Right Bound? X=3.6170213 Y=19.002263

The maximum point will be found between the 2 arrows.

6. On the bottom left of the screen the calculator will ask you to Guess?.

Press

ENTER

7. The y value will be the maximum value of the function.

In this case the graph of $y = -x^2 + 5x + 14$ has a **maximum value** of 20.25 or $\frac{81}{4}$

- The graph of $y = -x^2 + 5x + 14$ has a **maximum point** of (2.5, 20.25). Even though the *x* value on the display may read "2.4999991" or "2.5000002, it is usually an indication to round off to a reasonable answer (2.5).
- Test the point using the trace feature and entering x = 2.5.
- Use 3: minimum in CALC menu to find the minimum value of a function.

Consider the quadratic function $f(x) = 2x^2 - 13x + 15$.

a) State an appropriate window setting for displaying the graph of the function on a graphing calculator.

- Determine the coordinates of the vertex. (3.25, -6.125) or $\left(\frac{13}{4}, \frac{-49}{8}\right)$
- c) Explain how to use the coordinates of the vertex to determine the equation of the axis of symmetry of the graph. State the equation.

x=3.25 axis of symmetry is the x value of the vertex

- Determine the x- and y- intercepts of the graph.

 X-int 1.5, 5

 4 int 15
- e) Use the x-intercepts to verify the equation of the axis of symmetry in c).
- f) State the minimum value of the function.

 4 y valve of vertex -6.125

 g) State the domain and range of the function.

 C: Y > -6.125

Determining the Vertex from the Equation of the Axis of Symmetry

The coordinates of the vertex of the graph of a quadratic function can be determined from the equation of the axis of symmetry if we are given the equation of the quadratic function.

The line x = 2 is an axis of symmetry of the graph of $y = 4x^2 - 16x - 9$.

Without using a calculator, algebraically determine the coordinates of the vertex of the graph.

have x value of vertex, sub in and solve for y $y=4(a)^2-16(a)-9$ = 16-3a-9

Complete Assignment Questions #1 - #5

Investigating the Parameters a, b, and c in $y = ax^2 + bx + c$ **Investigation 1**:

Consider the equation $y = ax^2$.

- State the values of b and c.
- Investigate what happens to the graph of the function when the value of a is changed (use both positive and negative values for the parameter a). Write down your obs

Desimos app try a=-1/1 a=1 U large a compressification a=-10/1 a=1 U large a compressification a=-10/1 a=10 V graph, small a stretches graph

opens up, if a is \bigcirc graph quens dawn

Investigation 2:

Consider the equation $y = x^2 + bx$.

- State the values of a and c. C=0
- Investigate what happens to the graph of the function when the value of b is changed (use

try b=-1 b=1
b=-10 b=10
as the value of b changes, the parabola adjusts
so that it has one x-int at C, and another at opp sign
of b

- try different c's a=1 b=0 • State the values of a and b.
- Investigate what happens to the graph of the function when the value of c is changed (use both positive and negative values for the parameter c). Write down your observations.

always has a y-int at c

Summary of the Characteristics of the Graph of $y = ax^2 + bx + c$

The graph of a quadratic function defined by the equation $y = ax^2 + bx + c$ has the following characteristics. Fill in the blanks to complete the summary.

- The shape of the graph is a **parabola**.
- The graph is symmetrical about a vertical line called the **OXIS of Symmetry**
- If a > 0, the parabola opens $\underline{\mathbf{UP}}$ and the vertex is the $\underline{\mathbf{minimum}}$ point. $\underline{\mathbf{Value}}$ of the function.
- If a < 0, the parabola opens **down** and the vertex is the **max** point. The y-coordinate of the vertex is the **maximum** value of the function.
- The domain of the graph is XER.
- If c > 0, the graph has a **positive** y-intercept. If c < 0, the graph has a **negative** y-intercept. y = 0

Complete Assignment Questions #6 - #15

Assignment

#1-5	last de	ay	
#6-	10 ر8	-14	today
	10-14 رق		

1. The quadratic function shown below has integer values for the *x*- and *y*-intercepts. Complete the table.

<i>x</i> -intercepts	
y-intercept	
coordinates of the vertex	
equation of the axis of symmetry	
Domain	
Range	

a) Complete the table of values and graph the quadratic function on the grid.

х	у
-2	
-1	
0	
1	
2	
3	
4	
5	
6	

b) Complete the following by filling in the blanks or circling the correct alternative.

• The graph of the quadratic function $y = -x^2 + 4x + 5$ is a _____ The vertex is (,).

• The parabola opens (up / down) and therefore has a (maximum / minimum) point.

• The (maximum / minimum) value of the function is _____ .

• The *x*-intercepts of the graph are _____ and ____ . The *y*-intercept is _____ .

• The domain of the quadratic function is ______.

• The range of the quadratic function is ______.

 ${f c})$ i) Describe two methods for determining the equation of the axis of symmetry from the graph.

ii) Draw the axis of symmetry on the grid and state its equation.

- 3. Consider the quadratic function $g(x) = x^2 + 10x + 16$. State:
 - a) an appropriate window setting for displaying the graph of the function on a graphing calculator
 - **b**) the coordinates of the vertex
- c) the equation of the axis of symmetry of the graph
- **d**) the x- and y- intercepts of the graph
- e) the minimum point of the graph
- f) the minimum value of the function
- g) the domain and range of the function
- **4.** Consider the quadratic function $g(x) = -x^2 + 6x$. State:
 - a) the maximum value of the function
- **b**) the coordinates of the vertex
- c) the x- and y- intercepts of the graph
- **d**) the domain and range of the function
- 5. The line x = -3 is an axis of symmetry of the graph of $y = x^2 + 6x 7$. Without using a calculator, algebraically determine the coordinates of the vertex of the graph.
- **6.** Consider the graph of $y = -x^2 4x + 12$ which has an axis of symmetry with equation x + 2 = 0. Without using a calculator, algebraically determine the coordinates of the vertex of the graph.

 $y = -(-a)^2 - 4(-a) + 12$ (-2, 16) = -4+8+12 = 16 vertex

- 7. Without drawing the graph, how can you tell if the graph of function $f(x) = 2x^2 - 5x - 30$
 - a) opens up or down?
 - **b**) has a positive or negative y-intercept?

- **336** Quadratic Functions Lesson #2: Analyzing the Graph of $y = ax^2 + bx + c$
- 8. Without drawing the graph, how can you tell if the graph of a specific quadratic function $y = ax^2 + bx + c$
 - a) opens up or down?
- **b**) has a positive or negative y-intercept?
- 9. Write the equation of a quadratic function that opens down and passes through the origin.

Multiple 10.

Tony knows that the points (-3, -8) and (7, -8) lie on a parabola. The equation of the axis of symmetry of the parabola is

A.
$$y = -8$$

B.
$$x = 2$$

C.
$$x = 4$$

- unable to be determined from the given information
- 11. The equation of the axis of symmetry of the graph of a quadratic function is $x = \frac{9}{2}$. If the graph passes through the point (-3,0), it must also pass through the point

A.
$$\left(-\frac{21}{2}, 0\right)$$

A.
$$\left(-\frac{21}{2}, 0\right)$$
 B. $\left(\frac{15}{2}, 0\right)$

$$\mathbf{C}$$
. $(3,0)$

D.
$$(12,0)$$

12. The maximum value of the quadratic function with equation $y = -x^2 - x + 6$ is

A.
$$(-5, 6.25)$$

C.
$$\frac{25}{4}$$

- **D.** none of the above
- 13. Which of the following quadratic functions has a maximum point and a negative y-intercept?

A.
$$f(x) = \frac{1}{2}x^2 + 3x + 7$$
 B. $f(x) = 6x^2 + 3x - 2$

B.
$$f(x) = 6x^2 + 3x - 2$$

C.
$$f(x) = -13x^2 - 8x - 4$$
 D. $f(x) = -16x^2 - 3x + 12$

$$\mathbf{D.} \quad f(x) = -16x^2 - 3x + 12$$

- 14. Which of the following statements describes the graph of a quadratic function $f(x) = ax^2 + bx + c$ if both a and c are positive numbers?
 - The graph opens up and has a positive *y*-intercept.
 - В. The graph opens up and has a negative y-intercept.
 - C. The graph opens down and has a positive *y*-intercept.
 - D. The graph opens down and has a negative *y*-intercept.

Response

Numerical 15. The line x = 6 is an axis of symmetry of the graph of the quadratic function $y = x^2 - 5x + c$. If the vertex of the graph is (6, 18), the value of c is _____.

(Record your answer in the numerical response box from left to right.)

Answer Key

- 1. x-intercepts 1, 5 y-intercept 5, vertex (3, -4), axis of symmetry x = 3, Domain $x \in R$, Range $\{y \mid y \ge -4, y \in R\}$
- 2. a) See below

- **b**) parabola, (2, 9)
 - down, maximum
 - maximum, 9
 - **•** −1, 5, 5
 - x∈ R
 - $\{y \mid y \le 9, y \in R\}$
- c) i) Determine the number n which is the y-coordinate of the vertex. The equation of the axis of symmetry is x = n.
 - OR

Determine the number n which is the average of the x-intercepts. The equation of the axis of symmetry is x = n.

- **ii**) x = 2.
- **3.** a) x:[-10, 4, 2] y:[-15, 20, 5] b) (-5, -9) c) x = -5 d) x-intercepts -8, -2, y-intercept 16**f**) -9 **g**) Domain $x \in R$, Range $\{y \mid y \ge -9, y \in R\}$
- **4. a)** 9 **b)** (3,9) **c)** x-intercepts 0, 6, y-intercept 0 **d**) Domain $x \in R$, Range $\{y \mid y \le -9, y \in R\}$
- 5. (-3, -16)
- 6. (-2, 16)
- **7.** a) Graph opens up because the coefficient of x^2 (i.e. 2) is positive.
 - **b**) Graph has a negative *y*-intercept because the constant term (i.e. -30) is negative.
- **8.** a) If a > 0, the graph opens up. If a < 0, the graph opens down.
 - **b**) If c > 0, the y-intercept is positive. If c < 0, the y-intercept is negative.
- **9.** Answers may vary (but the parameter c must equal zero) e.g. $y = -2x^2 + 3x$.
- 10.B
- 11. D
- 12. C
- 13. C
- **14.** A 15.

1	2		
---	---	--	--

