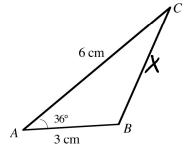


Trigonometry Lesson #3: The Cosine Law

Introduction

Consider triangle ABC in which $\angle A = 36^{\circ}$, AB = 3 cm and AC = 6 cm. What happens when you try to apply the sine law to determine the length of BC?

$$\frac{x}{\sin 36} = \frac{6}{\sin 6} = \frac{3}{\sin 6}$$



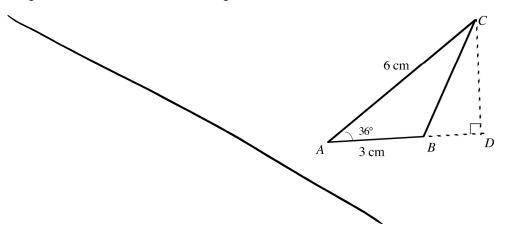
*unknown in each part

In the example above, where we are given the length of two sides and the contained angle, the sine law is **not** applicable.

We don't have enough info to UX Sine law

We can find the length of BC by making a right triangle BCD in the diagram below and using SOHCAHTOA to determine the lengths of CD and AD.

Determine the lengths of CD and AD to the nearest hundredth of a cm, and show how these lengths can be used to determine the length of BC to the nearest tenth of a cm.



The method above is time consuming.

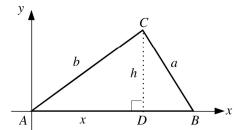
The length of BC can be determined in one step by using the **cosine law**.

The Cosine Law

In every triangle ABC, $a^2 = b^2 + c^2 - 2bc \cos A$.

Proof of the Cosine Law

- The diagram shows triangle *ABC* placed with base *AB* on the *x*-axis and *A* at the origin.
- The line *CD* is drawn perpendicular to *AB* and is *h* units in length.
- AD = x units so DB = c x units.



Complete the following work to show that $a^2 = b^2 + c^2 - 2bc \cos A$.

In
$$\triangle ADC$$
, $\cos A = \frac{AD}{AC} = \frac{x}{b}$ In $\triangle BDC$, $BC^2 = CD^2 + DB^2$ $a^2 = h^2 + (c - x)^2$ so $x =$ $a^2 = h^2 + c^2 - 2cx + x^2$ $a^2 = (h^2 + x^2) + c^2 - 2cx$ $a^2 = +c^2 - 2c$) $a^2 = b^2 + c^2 - 2bc \cos A$.

By placing AC and then BC on the x-axis, similar equations can be derived.

$$b^2 = c^2 + a^2 - 2ca \cos B$$

$$c^2 = a^2 + b^2 - 2ab \cos C$$

This version of the cosine law can be used in any triangle if we are given the lengths of two sides and the contained angle (SAS).

Consider the $\triangle ABC$ from Class Ex.#1 in which $\angle A = 36^{\circ}$, AB = 3 cm, and AC = 6 cm. Determine the length of BC, to the nearest tenth of a cm, using the cosine law.

$$a^2 = b^2 + c^2 - abc \cos A$$

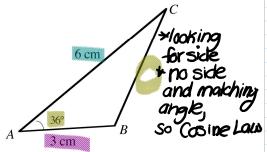
$$a^{2} = 6^{2} + 3^{2} - 2(6)(3)\cos 36$$

$$= 36 + 9 - 36\cos 36$$

$$= 45 - 29.1346118$$

$$0^{2} = 1.5.8753882$$

$$0 = 3.984... = 4.0$$

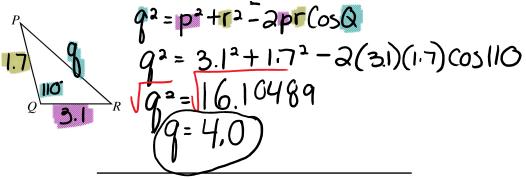


Consider triangle PQR shown

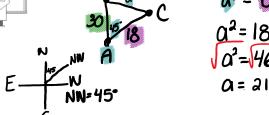
a) Complete the cosine law for calculating side q.

$$g = p^2 + r^2 - 2pr \cos Q$$

b) Calculate, to the nearest tenth of a cm, the length of the third side of $\triangle PQR$ if QP = 1.7 cm, QR = 3.1 cm, and $\angle PQR = 110^{\circ}$.

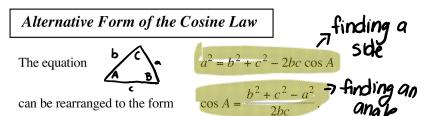


Bellevue is 30 km north of Ayr and Churchville is 18 km northwest of Ayr. Calculate the distance between Bellevue and Churchville to the nearest km.



 $a^2 = b^2 + c^2 - bc \cos A$ $a^2 = 18^2 + 30^2 - (18)(30)\cos 45$ $a^2 = 460.325$ a = 21 km

Complete Assignment Questions #1 - #4



This form of the cosine law can be used to determine any angle in a triangle when we are given the length of all three sides (SSS).

Complete the following for triangle ABC.

$$\frac{a) \cos B}{2ac} = \frac{a^2 + c^2 - b^2}{2ac}$$

b)
$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

Determine the largest angle in $\triangle ABC$ if a = 14.7, b = 8.9, and c = 12.6.



*biggest side = biggest angle
$$COSA = \frac{b^2 + c^2 - a^2}{alac}$$

Two ships set sail from port, P, heading in different directions. The first ship sails 7 km to R and the second ship sails 8 km to Q. If the distance between R and Q is 13 km, determine the angle between the directions of the two ships.



*finding angle
$$COSA = b^2 + c^2 - a^2$$

$$\cos P = \frac{7^2 + 8^2 - 13^2}{2.7 \cdot 8} = \frac{49 + 64 - 169}{112} = \frac{-56}{112} = 0.5$$

$$cos^{-1}$$
 cos^{-1} $P=120$

Complete Assignment Questions #5 - #11

Quiz Tles L1-3

Right angle
$$0^{2}+b^{2}=c^{2}$$

$$SHCHTA$$

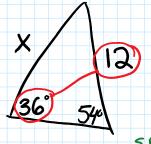
No right angle sine law

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$\frac{a}{\sin A} = \frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

$$\frac{1}{\cos k i n g}$$

*sine law we need a matching side and angle cosine if no matching side and angle



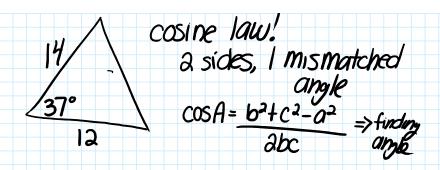
*no right angle 12) *matching side t angle 1>SINE law

$$\frac{51054 12}{51036} = \frac{\times 50054}{51054} + 185500 2$$

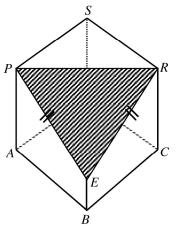
$$\frac{\sin 54.12}{\sin 36} = 16.5$$

$$180 - 37 - 54 = 89$$

$$5109 = \frac{\times}{5059}$$



- **8.** The solid in the diagram was formed by removing a corner from a cube of 24 cm. The length of *EB* is 6 cm.
 - **a**) Calculate, to the nearest tenth, the lengths of *PE* and *PR*.



b) Calculate the measure of angle *PER* to the nearest degree.

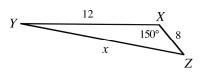
Use the following information to answer the next question.

- Cos 30° can be written as an exact value as $\frac{\sqrt{3}}{2}$.
- Cos 150° can be written as $-\frac{\sqrt{3}}{2}$.

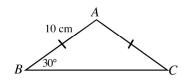
Multiple 9. In the diagram, the value of x^2 is

C.
$$208 - 96\sqrt{3}$$

D.
$$208 + 96\sqrt{3}$$

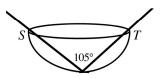


- 10. The length of BC in cm is
 - **A.** $5\sqrt{3}$
 - 10 В.
 - C. $10\sqrt{3}$
 - D. 20



Numerical 11. Response

The diagram shows a glass bowl with two chop-sticks resting on the rim at points S and T. The lengths of the parts of the chop-sticks inside the bowl are 9 cm and 11.5 cm respectively.



The length of ST, to the nearest tenth of a cm, is ____ (Record your answer in the numerical response box from left to right.)

Answer Key

1. a)
$$s^2 = t^2 + v^2 - 2tv \cos S$$
 b) $v^2 = s^2 + t^2 - 2st \cos V$

10. C

b)
$$v^2 = s^2 + t^2 - 2st \cos V$$

- **2. a)** 12.6 cm **b)** 4.2 cm
- **c**) 36.7 cm **3**. 28
- **4.** 17.5 m

5. a)
$$\cos E = \frac{d^2 + f^2 - e^2}{2df}$$
 b) $\cos F = \frac{d^2 + e^2 - f^2}{2de}$ **6.** a) 41° b) 36°

- 7. 40°
- **8.** a) PE = 30.0 cm, PR = 33.9 cm
- **b**) 69°

9. D

- 11.