Lesson Five Practice Assignment Confidence Intervals

- 1. The mean of the sampling distribution of \bar{x} is always equal to
 - a) μ
 - b) $Z_{\underline{\alpha}}$
 - c) $\frac{\sigma}{\sqrt{n}}$
- 3. When samples are selected from a normally distributed population, the sampling distribution of the sample mean has a normal distribution
 - a) if $n \ge 30$
 - b) if $n \ge 100$
 - c) all the time

- 2. The standard deviation of the sampling distribution of the sample mean decreases when
 - a) x increases
 - b) n increases
 - c) n decreases
- 4. When samples are selected from a nonnormally distributed population, the sampling distribution of the sample mean has a normal distribution
 - a) if $n \ge 30$
 - b) if $n \ge 100$
 - c) all the time
- 5. Determine $Z_{\frac{\sigma}{2}}$ for the following to two decimal places:
 - a. $Z_{\frac{\sigma}{2}}$ for 94% confidence interval
 - b. $Z_{\frac{\sigma}{2}}$ for 88% confidence interval
- 6. Determine the 92% confidence interval for μ if $\sigma = 4$, $\bar{x} = 76$, and n = 120.
- 7. A study of 50 English teachers found the average time spent marking a term paper was 15.2 minutes with a standard deviation of 2.8 minutes. Find a 95% confidence interval of the mean time for all term papers. (Note: round invNorm answer to 2 decimal places for your calculations)
- 8. Federal fisheries employees accompany large commercial fishing boats during openings. A random sample of 100 spring salmon yielded a mean length of 52 cm with a standard deviation of 5.1 cm. Find a 94% confidence interval for the mean length of all the spring salmon caught by the crew.
- 9. A real-estate firm in Winnipeg takes a random sample of 60 homes. This sample yields a mean of 1800 square feet of living space with a standard deviation of 280 square feet. Construct a 99% confidence level for the mean square footage of living space for all Winnipeg homes.

 (Note: round invNorm answer to 2 decimal places for your calculations)

- 10. Find the sample size necessary to estimate a population mean to within 2 units if $\sigma = 12$. We want 86% confidence level in our results.
- 11. A study of 50 people living in Crescent Beach, BC, showed the average age as 42 years with a standard deviation of 12 years. (Note: round invNorm answer to 2 decimal places for your calculations)
 - a) Find the 95% confidence interval of the mean age for all the people living in Crescent Beach.
 - b) If the 95% confidence interval of the study stays the same, but we have 100 people instead of 50, what happens to the confidence interval? Why?
- 12. A random sample of 400 passengers that arrive at Vancouver International Airport has a mean processing time of 45 minutes with a standard deviation of 12 minutes.
 - a) Construct a 98% confidence interval for the mean arrival time for all passengers
 - b) If the range you obtained in part a) is larger than you want, how can you narrow it?
- 13. The confidence interval $76.59 < \mu < 79.41$ is found by using a random sample for which $\bar{x} = 78$, $\sigma = 8$ and n = 70. Determine the degree of confidence.

ANSWERS

- 1. a
- 2. b
- 3. c
- 4. a
- 5a. ± 1.88
- 5b. \pm 1.55
- 6. $75.36 < \mu < 76.64$
- 7. $14.46 < \mu < 15.94$
- 8. $51.04 < \mu < 52.96$
- 9. $1706.9 < \mu < 1892.9$
- 10. Sample size needs at least 79
- 11a. 38.69 $< \mu <$ 45.31
- 11b. The confidence interval gets smaller because as the sample size increases the closer you get to the population mean
- 12a. 43.6 $< \mu <$ 46.4
- 12b. Accept a lower confidence level or increase the sample size
- 13. Confidence interval would be 86%